BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38506090)

  • 1. OsKASI-2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice.
    Zhang L; Wang S; Bai B; Chen Y; Xiang Z; Chen C; Kuang X; Yang Y; Fu J; Chen L; Mao D
    Plant Biotechnol J; 2024 Mar; ():. PubMed ID: 38506090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OsKASI, a β-ketoacyl-[acyl carrier protein] synthase I, is involved in root development in rice (Oryza sativa L.).
    Ding W; Lin L; Zhang B; Xiang X; Wu J; Pan Z; Zhu S
    Planta; 2015 Jul; 242(1):203-13. PubMed ID: 25893869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. bHLH57 confers chilling tolerance and grain yield improvement in rice.
    Zhang L; Xiang Z; Li J; Wang S; Chen Y; Liu Y; Mao D; Luan S; Chen L
    Plant Cell Environ; 2023 Apr; 46(4):1402-1418. PubMed ID: 36510797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COG2 negatively regulates chilling tolerance through cell wall components altered in rice.
    Feng J; Li Z; Luo W; Liang G; Xu Y; Chong K
    Theor Appl Genet; 2023 Jan; 136(1):19. PubMed ID: 36680595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis.
    Lv Y; Guo Z; Li X; Ye H; Li X; Xiong L
    Plant Cell Environ; 2016 Mar; 39(3):556-70. PubMed ID: 26381647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OsVPE2, a Member of Vacuolar Processing Enzyme Family, Decreases Chilling Tolerance of Rice.
    Deng H; Cao S; Zhang G; Xiao Y; Liu X; Wang F; Tang W; Lu X
    Rice (N Y); 2024 Jan; 17(1):5. PubMed ID: 38194166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural variation in the
    Mao D; Xin Y; Tan Y; Hu X; Bai J; Liu ZY; Yu Y; Li L; Peng C; Fan T; Zhu Y; Guo YL; Wang S; Lu D; Xing Y; Yuan L; Chen C
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3494-3501. PubMed ID: 30808744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated mutation in auxin efflux carrier
    Xu H; Yang X; Zhang Y; Wang H; Wu S; Zhang Z; Ahammed GJ; Zhao C; Liu H
    Front Plant Sci; 2022; 13():967031. PubMed ID: 35979077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Cold Tolerance Trait Phenotyping Reveals Shared Quantitative Trait Loci in Oryza sativa.
    Shimoyama N; Johnson M; Beaumont A; Schläppi M
    Rice (N Y); 2020 Aug; 13(1):57. PubMed ID: 32797316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots.
    Lee SH; Ahn SJ; Im YJ; Cho K; Chung GC; Cho BH; Han O
    Biochem Biophys Res Commun; 2005 May; 330(4):1194-8. PubMed ID: 15823569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency of Auxin Efflux Carrier
    Yang C; Wang H; Ouyang Q; Chen G; Fu X; Hou D; Xu H
    Plants (Basel); 2023 Dec; 12(23):. PubMed ID: 38068693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of
    Ouyang Q; Zhang Y; Yang X; Yang C; Hou D; Liu H; Xu H
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Wild Rice Locus
    Cen W; Zhao W; Ma M; Lu S; Liu J; Cao Y; Zeng Z; Wei H; Wang S; Li R; Luo J
    Front Plant Sci; 2020; 11():575699. PubMed ID: 33193516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.).
    Zhao XQ; Wang WS; Zhang F; Zhang T; Zhao W; Fu BY; Li ZK
    Rice (N Y); 2013 Oct; 6(1):23. PubMed ID: 24280004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice.
    Liu D; Luo S; Li Z; Liang G; Guo Y; Xu Y; Chong K
    New Phytol; 2024 Mar; 241(5):2143-2157. PubMed ID: 38173177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive expression of chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in transgenic Arabidopsis.
    Xue M; Guo T; Ren M; Wang Z; Tang K; Zhang W; Wang M
    Plant Physiol Biochem; 2019 Oct; 143():375-387. PubMed ID: 31542639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice.
    Cheng C; Yun KY; Ressom HW; Mohanty B; Bajic VB; Jia Y; Yun SJ; de los Reyes BG
    BMC Genomics; 2007 Jun; 8():175. PubMed ID: 17577400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection.
    Schläppi MR; Jackson AK; Eizenga GC; Wang A; Chu C; Shi Y; Shimoyama N; Boykin DL
    Front Plant Sci; 2017; 8():957. PubMed ID: 28642772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco.
    Yang S; Tang XF; Ma NN; Wang LY; Meng QW
    J Plant Physiol; 2011 Oct; 168(15):1804-12. PubMed ID: 21724293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice.
    Xia C; Liang G; Chong K; Xu Y
    Nat Commun; 2023 May; 14(1):3104. PubMed ID: 37248220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.