These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38506115)

  • 1. A fully spiking coupled model of a deep neural network and a recurrent attractor explains dynamics of decision making in an object recognition task.
    Sadeghnejad N; Ezoji M; Ebrahimpour R; Qodosi M; Zabbah S
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38506115
    [No Abstract]   [Full Text] [Related]  

  • 2. Resolving the neural mechanism of core object recognition in space and time: A computational approach.
    Sadeghnejad N; Ezoji M; Ebrahimpour R; Zabbah S
    Neurosci Res; 2023 May; 190():36-50. PubMed ID: 36502958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neurocomputational model of decision and confidence in object recognition task.
    Roshan SS; Sadeghnejad N; Sharifizadeh F; Ebrahimpour R
    Neural Netw; 2024 Jul; 175():106318. PubMed ID: 38643618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A temporal hierarchical feedforward model explains both the time and the accuracy of object recognition.
    Heidari-Gorji H; Ebrahimpour R; Zabbah S
    Sci Rep; 2021 Mar; 11(1):5640. PubMed ID: 33707537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual Decision-Making: Biases in Post-Error Reaction Times Explained by Attractor Network Dynamics.
    Berlemont K; Nadal JP
    J Neurosci; 2019 Jan; 39(5):833-853. PubMed ID: 30504276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits.
    Miller P; Katz DB
    J Comput Neurosci; 2013 Dec; 35(3):261-94. PubMed ID: 23608921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goal-Directed Decision Making with Spiking Neurons.
    Friedrich J; Lengyel M
    J Neurosci; 2016 Feb; 36(5):1529-46. PubMed ID: 26843636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity effect and optimal control of multiple-choice decision making.
    Furman M; Wang XJ
    Neuron; 2008 Dec; 60(6):1153-68. PubMed ID: 19109918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient multi-scale representation of visual objects using a biologically plausible spike-latency code and winner-take-all inhibition.
    Sanchez-Garcia M; Chauhan T; Cottereau BR; Beyeler M
    Biol Cybern; 2023 Apr; 117(1-2):95-111. PubMed ID: 37004546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of mind in an attractor network of decision-making.
    Albantakis L; Deco G
    PLoS Comput Biol; 2011 Jun; 7(6):e1002086. PubMed ID: 21731482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A recurrent network mechanism of time integration in perceptual decisions.
    Wong KF; Wang XJ
    J Neurosci; 2006 Jan; 26(4):1314-28. PubMed ID: 16436619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal adaptation effects in decision making.
    Theodoni P; Kovács G; Greenlee MW; Deco G
    J Neurosci; 2011 Jan; 31(1):234-46. PubMed ID: 21209209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuromorphic architecture for object recognition and motion anticipation using burst-STDP.
    Nere A; Olcese U; Balduzzi D; Tononi G
    PLoS One; 2012; 7(5):e36958. PubMed ID: 22615855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A bio-inspired hierarchical spiking neural network with biological synaptic plasticity for event camera object recognition].
    Zhou Q; Zheng P; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Aug; 40(4):692-699. PubMed ID: 37666759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structure-time parallel implementation of spike-based deep learning.
    Wu X; Wang Y; Tang H; Yan R
    Neural Netw; 2019 May; 113():72-78. PubMed ID: 30785011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.