These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38506292)

  • 1. Second inflection point of supercooled water surface tension induced by hydrogen bonds: A molecular-dynamics study.
    Hrahsheh F; Jum'h I; Wilemski G
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38506292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations.
    Wang X; Binder K; Chen C; Koop T; Pöschl U; Su H; Cheng Y
    Phys Chem Chem Phys; 2019 Feb; 21(6):3360-3369. PubMed ID: 30693356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible Anomaly in the Surface Tension of Supercooled Water: New Experiments at Extreme Supercooling down to -31.4 °C.
    Vinš V; Hykl J; Hrubý J; Blahut A; Celný D; Čenský M; Prokopová O
    J Phys Chem Lett; 2020 Jun; 11(11):4443-4447. PubMed ID: 32419467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface tension of supercooled water determined by using a counterpressure capillary rise method.
    Vinš V; Fransen M; Hykl J; Hrubý J
    J Phys Chem B; 2015 Apr; 119(17):5567-75. PubMed ID: 25849084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Tension of Supercooled Water: No Inflection Point down to -25 °C.
    Hrubý J; Vinš V; Mareš R; Hykl J; Kalová J
    J Phys Chem Lett; 2014 Feb; 5(3):425-8. PubMed ID: 26276586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-density liquid (HDL) adsorption at the supercooled water/vapor interface and its possible relation to the second surface tension inflection point.
    Gorfer A; Dellago C; Sega M
    J Chem Phys; 2023 Feb; 158(5):054503. PubMed ID: 36754827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface tension of supercooled water nanodroplets from computer simulations.
    Malek SMA; Poole PH; Saika-Voivod I
    J Chem Phys; 2019 Jun; 150(23):234507. PubMed ID: 31228899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of wetting of alkanes on water: from high temperature to the supercooled region and the influence of second inflection points of interfacial tensions.
    Neupane P; Wilemski G
    Phys Chem Chem Phys; 2021 Jul; 23(26):14465-14476. PubMed ID: 34184020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations.
    McMillin PJ; Alegrete M; Peric M; Luchko T
    J Phys Chem B; 2020 May; 124(19):3962-3972. PubMed ID: 32301326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalies in Supercooled Water at ∼230 K Arise from a 1D Polymer to 2D Network Topological Transformation.
    Naserifar S; Goddard WA
    J Phys Chem Lett; 2019 Oct; 10(20):6267-6273. PubMed ID: 31560560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The surface tension of water calculated from a random network model.
    Henn AR
    Biophys Chem; 2003 Sep; 105(2-3):533-43. PubMed ID: 14499916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of structural and dynamical properties of formamide-water mixtures.
    Elola MD; Ladanyi BM
    J Chem Phys; 2006 Nov; 125(18):184506. PubMed ID: 17115764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of fluctuations in supercooled TIP4P/2005 water.
    Overduin SD; Patey GN
    J Chem Phys; 2013 May; 138(18):184502. PubMed ID: 23676051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of excess entropy scaling to describe the dynamic properties of water.
    Chopra R; Truskett TM; Errington JR
    J Phys Chem B; 2010 Aug; 114(32):10558-66. PubMed ID: 20701386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonds in membrane proteins.
    Sheu SY; Schlag EW; Selzle HL; Yang DY
    J Phys Chem B; 2009 Apr; 113(15):5318-26. PubMed ID: 19354309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water.
    Rogers TR; Leong KY; Wang F
    Sci Rep; 2016 Sep; 6():33284. PubMed ID: 27615518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model.
    Gartner TE; Hunter KM; Lambros E; Caruso A; Riera M; Medders GR; Panagiotopoulos AZ; Debenedetti PG; Paesani F
    J Phys Chem Lett; 2022 Apr; 13(16):3652-3658. PubMed ID: 35436129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water.
    Mountain RD
    J Phys Chem B; 2009 Jan; 113(2):482-6. PubMed ID: 19086867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.