These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38506296)

  • 21. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination.
    Chu W; Zheng Q; Prezhdo OV; Zhao J; Saidi WA
    Sci Adv; 2020 Feb; 6(7):eaaw7453. PubMed ID: 32110721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How Hole Injection Accelerates Both Ion Migration and Nonradiative Recombination in Metal Halide Perovskites.
    Tong CJ; Cai X; Zhu AY; Liu LM; Prezhdo OV
    J Am Chem Soc; 2022 Apr; 144(14):6604-6612. PubMed ID: 35362968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages.
    Fu Y; Jiang X; Li X; Traore B; Spanopoulos I; Katan C; Even J; Kanatzidis MG; Harel E
    J Am Chem Soc; 2020 Feb; 142(8):4008-4021. PubMed ID: 32031788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites.
    Li W; She Y; Vasenko AS; Prezhdo OV
    Nanoscale; 2021 Jun; 13(23):10239-10265. PubMed ID: 34031683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anharmonicity Extends Carrier Lifetimes in Lead Halide Perovskites at Elevated Temperatures.
    Li W; Vasenko AS; Tang J; Prezhdo OV
    J Phys Chem Lett; 2019 Oct; 10(20):6219-6226. PubMed ID: 31556621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving Lattice Rigidity and Charge Carrier Lifetime by Engineering Spacer Cation of Ruddlesden-Popper Perovskites: A Time-Domain
    Dai D; Shi R; Long R
    J Phys Chem Lett; 2022 Mar; 13(12):2718-2724. PubMed ID: 35311293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benign Effects of Twin Boundaries on Charge Carrier Lifetime in Metal Halide Perovskites by a Time-Domain Study.
    Zhao X; Long R
    J Phys Chem Lett; 2021 Sep; 12(35):8575-8582. PubMed ID: 34468158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Merits and Challenges of Ruddlesden-Popper Soft Halide Perovskites in Electro-Optics and Optoelectronics.
    Chen Z; Guo Y; Wertz E; Shi J
    Adv Mater; 2019 Jan; 31(1):e1803514. PubMed ID: 30368915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorine doping reduces electron-hole recombination in lead iodide perovskites: time-domain ab initio analysis.
    Liu J; Prezhdo OV
    J Phys Chem Lett; 2015 Nov; 6(22):4463-9. PubMed ID: 26505613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organic cations promote exciton dissociation in Ruddlesden-Popper lead iodide perovskites: a theoretical study.
    Tan X; Feng Q; Nan G
    Mater Horiz; 2024 May; 11(9):2248-2257. PubMed ID: 38436053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does Dipolar Motion of Organic Cations Affect Polaron Dynamics and Bimolecular Recombination in Halide Perovskites?
    Munson KT; Swartzfager JR; Gan J; Asbury JB
    J Phys Chem Lett; 2020 Apr; 11(8):3166-3172. PubMed ID: 32243757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight on the Stability of Thick Layers in 2D Ruddlesden-Popper and Dion-Jacobson Lead Iodide Perovskites.
    Vasileiadou ES; Wang B; Spanopoulos I; Hadar I; Navrotsky A; Kanatzidis MG
    J Am Chem Soc; 2021 Feb; 143(6):2523-2536. PubMed ID: 33534580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation.
    Mosconi E; Quarti C; Ivanovska T; Ruani G; De Angelis F
    Phys Chem Chem Phys; 2014 Aug; 16(30):16137-44. PubMed ID: 24968243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collective Motion Improves the Stability and Charge Carrier Lifetime of Metal Halide Perovskites: A Phonon-Resolved Nonadiabatic Molecular Dynamics Study.
    Lu H; Fang WH; Long R
    J Phys Chem Lett; 2022 Apr; 13(13):3016-3022. PubMed ID: 35348332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ruddlesden-Popper 2D perovskites of type (C
    Rahil M; Ansari RM; Prakash C; Islam SS; Dixit A; Ahmad S
    Sci Rep; 2022 Feb; 12(1):2176. PubMed ID: 35140250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics.
    Li A; Liu Q; Chu W; Liang W; Prezhdo OV
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16567-16575. PubMed ID: 33793206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of Charge Recombination in Perovskites by Oxidation State of Halide Vacancy.
    Li W; Sun YY; Li L; Zhou Z; Tang J; Prezhdo OV
    J Am Chem Soc; 2018 Nov; 140(46):15753-15763. PubMed ID: 30362747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unravelling the Effects of A-Site Cations on Nonradiative Electron-Hole Recombination in Lead Bromide Perovskites: Time-Domain ab Initio Analysis.
    He J; Fang WH; Long R
    J Phys Chem Lett; 2018 Sep; 9(17):4834-4840. PubMed ID: 30095268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrasting the stability, octahedral distortions, and optoelectronic properties of 3D MABX
    Danelon JG; Santos RM; Dias AC; Da Silva JLF; Lima MP
    Phys Chem Chem Phys; 2024 Mar; 26(10):8469-8487. PubMed ID: 38410922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anomalous Temperature-Dependent Charge Recombination in CH
    Wang Y; Long R
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32069-32075. PubMed ID: 31424190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.