These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38506566)

  • 1. Evidence for Trans-Oligoene Chain Formation in Graphene Induced by Iodine.
    Grote F; Weintrub BI; Kreßler M; Cao Q; Halbig CE; Kusch P; Bolotin KI; Eigler S
    Small; 2024 Mar; ():e2311987. PubMed ID: 38506566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Lattice Defects on Trans-Oligoene Substructure Formation in Graphene.
    Grote F; Eigler S
    Chemistry; 2024 Jun; 30(32):e202401031. PubMed ID: 38588000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene.
    Wu Z; Han Y; Huang R; Chen X; Guo Y; He Y; Li W; Cai Y; Wang N
    Nanoscale; 2014 Nov; 6(21):13196-202. PubMed ID: 25255329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.
    Lazar P; Chua CK; Holá K; Zbořil R; Otyepka M; Pumera M
    Small; 2015 Aug; 11(31):3790-6. PubMed ID: 25939616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable doping of graphene nanoribbon arrays by chemical functionalization.
    Solís-Fernández P; Bissett MA; Tsuji M; Ago H
    Nanoscale; 2015 Feb; 7(8):3572-80. PubMed ID: 25630426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards graphene iodide: iodination of graphite oxide.
    Šimek P; Klímová K; Sedmidubský D; Jankovský O; Pumera M; Sofer Z
    Nanoscale; 2015 Jan; 7(1):261-70. PubMed ID: 25407247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives.
    Sturala J; Luxa J; Pumera M; Sofer Z
    Chemistry; 2018 Apr; 24(23):5992-6006. PubMed ID: 29071744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization.
    Wang QH; Shih CJ; Paulus GL; Strano MS
    J Am Chem Soc; 2013 Dec; 135(50):18866-75. PubMed ID: 24266808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of graphene characterized by Raman and transport experiments.
    Koehler FM; Jacobsen A; Ihn T; Ensslin K; Stark WJ
    Nanoscale; 2012 Jun; 4(12):3781-5. PubMed ID: 22610654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards hybrid superlattices in graphene.
    Sun Z; Pint CL; Marcano DC; Zhang C; Yao J; Ruan G; Yan Z; Zhu Y; Hauge RH; Tour JM
    Nat Commun; 2011 Nov; 2():559. PubMed ID: 22127055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-phase photo-induced covalent modification (PICM) of single-layer graphene by short-chain fatty acids.
    Feng G; Inose T; Suzuki N; Wen H; Taemaitree F; Wolf M; Toyouchi S; Fujita Y; Hirai K; Uji-I H
    Nanoscale; 2023 Mar; 15(10):4932-4939. PubMed ID: 36786025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Functionalization by Cycloaddition Reactions of Pristine Defect-Free Graphene.
    Daukiya L; Mattioli C; Aubel D; Hajjar-Garreau S; Vonau F; Denys E; Reiter G; Fransson J; Perrin E; Bocquet ML; Bena C; Gourdon A; Simon L
    ACS Nano; 2017 Jan; 11(1):627-634. PubMed ID: 28027437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient and Reversible Covalent Patterning of Graphene: 2D-Management of Chemical Information.
    Wei T; Kohring M; Chen M; Yang S; Weber HB; Hauke F; Hirsch A
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5602-5606. PubMed ID: 31833618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible basal plane hydrogenation of graphene.
    Ryu S; Han MY; Maultzsch J; Heinz TF; Kim P; Steigerwald ML; Brus LE
    Nano Lett; 2008 Dec; 8(12):4597-602. PubMed ID: 19053793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DFT study of halogen atoms adsorbed on graphene layers.
    Medeiros PV; Mascarenhas AJ; de Brito Mota F; de Castilho CM
    Nanotechnology; 2010 Dec; 21(48):485701. PubMed ID: 21063056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Modification of Single-Layer Graphene Under Laser Irradiation Featured by Micro-Raman Spectroscopy.
    Stubrov Y; Nikolenko A; Strelchuk V; Nedilko S; Chornii V
    Nanoscale Res Lett; 2017 Dec; 12(1):297. PubMed ID: 28446000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping of graphene induced by boron/silicon substrate.
    Dianat A; Liao Z; Gall M; Zhang T; Gutierrez R; Zschech E; Cuniberti G
    Nanotechnology; 2017 May; 28(21):215701. PubMed ID: 28402285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for Electron Transfer between Graphene and Non-Covalently Bound π-Systems.
    Brülls SM; Cantatore V; Wang Z; Tam PL; Malmberg P; Stubbe J; Sarkar B; Panas I; Mårtensson J; Eigler S
    Chemistry; 2020 May; 26(29):6694-6702. PubMed ID: 32227533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform Atomic Layer Deposition of Al
    Vervuurt RH; Karasulu B; Verheijen MA; Kessels WE; Bol AA
    Chem Mater; 2017 Mar; 29(5):2090-2100. PubMed ID: 28405059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.