These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38506642)

  • 21. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.
    Song Q; Zhang ZJ
    J Am Chem Soc; 2004 May; 126(19):6164-8. PubMed ID: 15137781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the strain-dependent structure of Cu nanocrystals in Ag-Cu nanoalloys.
    Settem M; Srivastav AK; Kanjarla AK
    Phys Chem Chem Phys; 2021 Dec; 23(46):26165-26177. PubMed ID: 34797355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing the Efficiency of Free Energy Calculations Using Parallel Tempering and Histogram Reweighting.
    Rick SW
    J Chem Theory Comput; 2006 Jul; 2(4):939-46. PubMed ID: 26633053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra.
    Gilroy KD; Elnabawy AO; Yang TH; Roling LT; Howe J; Mavrikakis M; Xia Y
    Nano Lett; 2017 Jun; 17(6):3655-3661. PubMed ID: 28448153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction Atmospheres and Surface Ligation Control Surface Reactivity and Morphology of Cerium Oxide Nanocrystals during Continuous Addition Synthesis.
    Knecht TA; Hutchison JE
    Inorg Chem; 2022 Mar; 61(11):4690-4704. PubMed ID: 35249321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals.
    Tang A; Qu S; Li K; Hou Y; Teng F; Cao J; Wang Y; Wang Z
    Nanotechnology; 2010 Jul; 21(28):285602. PubMed ID: 20562487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic Properties of Supported and Embedded Metallic Nanocrystals: Gold on/in SiO2.
    Ruffino F; Grimaldi M; Giannazzo F; Roccaforte F; Raineri V
    Nanoscale Res Lett; 2008 Oct; 3(11):454-60. PubMed ID: 21752308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical Transformations of Noble-Metal Nanocrystals upon Thermal Activation.
    Lyu Z; Chen R; Mavrikakis M; Xia Y
    Acc Chem Res; 2021 Jan; 54(1):1-10. PubMed ID: 33275422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Assembly of a Linear Alkylamine Bilayer around a Cu Nanocrystal: Molecular Dynamics.
    Yan T; Fichthorn KA
    J Phys Chem B; 2021 Apr; 125(16):4178-4186. PubMed ID: 33872508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N,N-Dimethylformamide-Assisted Shape Evolution of Highly Uniform and Shape-Pure Colloidal Copper Nanocrystals.
    Lee DW; Woo HY; Lee DHD; Jung MC; Lee D; Lee M; Kim JB; Chae JY; Han MJ; Paik T
    Small; 2021 Oct; 17(40):e2103302. PubMed ID: 34468086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of On-the-Fly Probability Enhanced Sampling and Parallel Tempering Combined with Metadynamics for Atomistic Simulations of RNA Tetraloop Folding.
    Rahimi K; Piaggi PM; Zerze GH
    J Phys Chem B; 2023 Jun; 127(21):4722-4732. PubMed ID: 37196167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic copper nanocrystals synthesized in a supersaturated medium: nanocrystal growth.
    Salzemann C; Lisiecki I; Urban J; Pileni MP
    Langmuir; 2004 Dec; 20(26):11772-7. PubMed ID: 15595810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High frequency surface vibrational modes and relaxation of MgO nanocrystals.
    Wassermann B; Rieder KH
    Phys Rev Lett; 2002 Jan; 88(4):045501. PubMed ID: 11801134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-purity Cu nanocrystal synthesis by a dynamic decomposition method.
    Jian X; Cao Y; Chen G; Wang C; Tang H; Yin L; Luan C; Liang Y; Jiang J; Wu S; Zeng Q; Wang F; Zhang C
    Nanoscale Res Lett; 2014 Dec; 9(1):2499. PubMed ID: 26089006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic properties of 55-atom Pt-based nanoalloys: Phase changes and structural effects on the electronic properties.
    Cezar HM; Rondina GG; Da Silva JLF
    J Chem Phys; 2019 Nov; 151(20):204301. PubMed ID: 31779323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composition-, Size-, and Surface Functionalization-Dependent Optical Properties of Lead Bromide Perovskite Nanocrystals.
    Ijaz P; Imran M; Soares MM; Tolentino HCN; Martín-García B; Giannini C; Moreels I; Manna L; Krahne R
    J Phys Chem Lett; 2020 Mar; 11(6):2079-2085. PubMed ID: 32090576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes.
    Choi SH; Kim EG; Hyeon T
    J Am Chem Soc; 2006 Mar; 128(8):2520-1. PubMed ID: 16492020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-liquid interfacial energies and equilibrium shapes of nanocrystals.
    Backofen R; Voigt A
    J Phys Condens Matter; 2009 Nov; 21(46):464109. PubMed ID: 21715873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melting entropy of nanocrystals: an approach from statistical physics.
    Safaei A; Attarian Shandiz M
    Phys Chem Chem Phys; 2010 Dec; 12(47):15372-81. PubMed ID: 21031184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.