These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38506664)

  • 1. ELViM: Exploring Biomolecular Energy Landscapes through Multidimensional Visualization.
    Viegas RG; Martins IBS; Sanches MN; Oliveira Junior AB; Camargo JB; Paulovich FV; Leite VBP
    J Chem Inf Model; 2024 Apr; 64(8):3443-3450. PubMed ID: 38506664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Folding Transition-State Ensembles in the Energy Landscape of an RNA Tetraloop.
    Viegas RG; Sanches MN; Chen AA; Paulovich FV; Garcia AE; Leite VBP
    J Chem Inf Model; 2023 Sep; 63(17):5641-5649. PubMed ID: 37606640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing Biomolecular Pathways and Metastable States.
    Oliveira AB; Yang H; Whitford PC; Leite VBP
    J Chem Theory Comput; 2019 Nov; 15(11):6482-6490. PubMed ID: 31618581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Mastoparan-like Antimicrobial Peptides Interaction with Model Membrane Through Energy Landscape Analysis.
    Martins IBS; Viegas RG; Sanches MN; de Araujo AS; Leite VBP
    J Phys Chem B; 2024 Jan; 128(1):163-171. PubMed ID: 38159056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition.
    Chu X; Gan L; Wang E; Wang J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):E2342-51. PubMed ID: 23754431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the folding landscape of leptin: Insights into threading pathways.
    da Silva FB; Simien JM; Viegas RG; Haglund E; Leite VBP
    J Struct Biol; 2024 Mar; 216(1):108054. PubMed ID: 38065428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis in a multidimensional energy landscape: study of an arginylglutamate repeat.
    Campos SR; Baptista AM
    J Phys Chem B; 2009 Dec; 113(49):15989-6001. PubMed ID: 19778072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Energy Landscapes of Intrinsically Disordered Proteins: Insights into Functional Mechanisms.
    Oliveira Junior AB; Lin X; Kulkarni P; Onuchic JN; Roy S; Leite VBP
    J Chem Theory Comput; 2021 May; 17(5):3178-3187. PubMed ID: 33871257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidimensional virtual-system coupled canonical molecular dynamics to compute free-energy landscapes of peptide multimer assembly.
    Hayami T; Higo J; Nakamura H; Kasahara K
    J Comput Chem; 2019 Oct; 40(28):2453-2463. PubMed ID: 31282023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Free Energy Landscape From MD Data via Conditional Angle Partition Tree.
    Jiang H; Li H; Wong WH; Fan X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1384-1394. PubMed ID: 35503836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Virtual Reality Visualization with Ensemble Molecular Dynamics to Study Complex Protein Conformational Changes.
    Juárez-Jiménez J; Tew P; O Connor M; Llabrés S; Sage R; Glowacki D; Michel J
    J Chem Inf Model; 2020 Dec; 60(12):6344-6354. PubMed ID: 33180485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical Content Correlations and Hydration Structures of the Folding Ensemble of the B Domain of Protein A.
    Pereira AF; Martínez L
    J Chem Inf Model; 2024 Apr; 64(8):3350-3359. PubMed ID: 38566451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics of biomolecular recognition and conformational dynamics.
    Chu WT; Yan Z; Chu X; Zheng X; Liu Z; Xu L; Zhang K; Wang J
    Rep Prog Phys; 2021 Dec; 84(12):. PubMed ID: 34753115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving the fine structure in the energy landscapes of repeat proteins.
    Sanches MN; Parra RG; Viegas RG; Oliveira AB; Wolynes PG; Ferreiro DU; Leite VBP
    QRB Discov; 2022; 3():e7. PubMed ID: 37529289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates.
    Sittel F; Jain A; Stock G
    J Chem Phys; 2014 Jul; 141(1):014111. PubMed ID: 25005281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When MELD Meets GaMD: Accelerating Biomolecular Landscape Exploration.
    Caparotta M; Perez A
    J Chem Theory Comput; 2023 Dec; 19(23):8743-8750. PubMed ID: 38039424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random walks in a free energy landscape combining augmented molecular dynamics simulations with a dynamic graph neural network model.
    Kamberaj H
    J Mol Graph Model; 2022 Jul; 114():108199. PubMed ID: 35462186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Conformational Dynamics of Proteins Using Evolutionary Couplings.
    Feng J; Shukla D
    J Phys Chem B; 2018 Jan; 122(3):1017-1025. PubMed ID: 29293335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding the conformational behavior of peptide dendrimers: insights from molecular dynamics simulations.
    Filipe LC; Machuqueiro M; Baptista AM
    J Am Chem Soc; 2011 Apr; 133(13):5042-52. PubMed ID: 21405018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced sampling and free energy calculations for protein simulations.
    Liao Q
    Prog Mol Biol Transl Sci; 2020; 170():177-213. PubMed ID: 32145945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.