These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38507168)
1. Application of machine learning in prediction of Pb Huang W; Wang L; Zhu J; Dong L; Hu H; Yao H; Wang L; Lin Z Environ Sci Pollut Res Int; 2024 Apr; 31(18):27286-27303. PubMed ID: 38507168 [TBL] [Abstract][Full Text] [Related]
2. The application of machine learning methods for prediction of metal sorption onto biochars. Zhu X; Wang X; Ok YS J Hazard Mater; 2019 Oct; 378():120727. PubMed ID: 31202073 [TBL] [Abstract][Full Text] [Related]
3. Predicting Cd(II) adsorption capacity of biochar materials using typical machine learning models for effective remediation of aquatic environments. Chen L; Hu J; Wang H; He Y; Deng Q; Wu F Sci Total Environ; 2024 Sep; 944():173955. PubMed ID: 38879031 [TBL] [Abstract][Full Text] [Related]
4. Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar. Shen T; Peng H; Yuan X; Liang Y; Liu S; Wu Z; Leng L; Qin P J Hazard Mater; 2024 Mar; 466():133442. PubMed ID: 38244458 [TBL] [Abstract][Full Text] [Related]
5. [Adsorption Characteristics of Biochar on Heavy Metals (Pb and Zn) in Soil]. Wang H; Xia W; Lu P; Bu YW; Yang H Huan Jing Ke Xue; 2017 Sep; 38(9):3944-3952. PubMed ID: 29965278 [TBL] [Abstract][Full Text] [Related]
6. Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume. Zhao F; Tang L; Song W; Jiang H; Liu Y; Chen H Sci Total Environ; 2024 Oct; 948():174584. PubMed ID: 38977098 [TBL] [Abstract][Full Text] [Related]
7. Machine learning-driven prediction of phosphorus removal performance of metal-modified biochar and optimization of preparation processes considering water quality management objectives. Fu W; Feng M; Guo C; Zhou J; Zhang X; Lv S; Huo Y; Wang F Bioresour Technol; 2024 Jul; 403():130861. PubMed ID: 38768663 [TBL] [Abstract][Full Text] [Related]
8. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar. Li H; Ai Z; Yang L; Zhang W; Yang Z; Peng H; Leng L Bioresour Technol; 2023 Feb; 369():128417. PubMed ID: 36462763 [TBL] [Abstract][Full Text] [Related]
9. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693 [TBL] [Abstract][Full Text] [Related]
10. Critical insights into ensemble learning with decision trees for the prediction of biochar yield and higher heating value from pyrolysis of biomass. Kandpal S; Tagade A; Sawarkar AN Bioresour Technol; 2024 Nov; 411():131321. PubMed ID: 39173959 [TBL] [Abstract][Full Text] [Related]
11. Machine learning-driven prediction of phosphorus adsorption capacity of biochar: Insights for adsorbent design and process optimization. Lyu H; Xu Z; Zhong J; Gao W; Liu J; Duan M J Environ Manage; 2024 Oct; 369():122405. PubMed ID: 39236616 [TBL] [Abstract][Full Text] [Related]
12. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Ni BJ; Huang QS; Wang C; Ni TY; Sun J; Wei W Chemosphere; 2019 Mar; 219():351-357. PubMed ID: 30551101 [TBL] [Abstract][Full Text] [Related]
13. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Liu L; Huang Y; Zhang S; Gong Y; Su Y; Cao J; Hu H Waste Manag; 2019 Dec; 100():287-295. PubMed ID: 31568977 [TBL] [Abstract][Full Text] [Related]
14. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131 [TBL] [Abstract][Full Text] [Related]
15. Investigating the adsorption behavior and quantitative contribution of Pb Liu L; Huang Y; Meng Y; Cao J; Hu H; Su Y; Dong L; Tao S; Ruan R Environ Res; 2020 Aug; 187():109609. PubMed ID: 32450423 [TBL] [Abstract][Full Text] [Related]
16. Adsorption antagonism and synergy of arsenate(V) and cadmium(II) onto Fe-modified rice straw biochars. Zhang Y; Fan J; Fu M; Ok YS; Hou Y; Cai C Environ Geochem Health; 2019 Aug; 41(4):1755-1766. PubMed ID: 28550600 [TBL] [Abstract][Full Text] [Related]
17. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091 [TBL] [Abstract][Full Text] [Related]
18. Enhancing lead adsorption capacity prediction in biochar: a comparative study of machine learning models and parameter optimization. Liang J; Wu M; Hu Z; Zhao M; Xue Y Environ Sci Pollut Res Int; 2023 Dec; 30(57):120832-120843. PubMed ID: 37945960 [TBL] [Abstract][Full Text] [Related]
19. The application of machine learning methods for prediction of metal immobilization remediation by biochar amendment in soil. Sun Y; Zhang Y; Lu L; Wu Y; Zhang Y; Kamran MA; Chen B Sci Total Environ; 2022 Jul; 829():154668. PubMed ID: 35318058 [TBL] [Abstract][Full Text] [Related]
20. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb Shi Q; Zhang H; Shahab A; Zeng H; Zeng H; Bacha AU; Nabi I; Siddique J; Ullah H Ecotoxicol Environ Saf; 2021 Sep; 221():112426. PubMed ID: 34166940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]