These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38507380)

  • 21. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
    Russell Esposito E; Aldridge Whitehead JM; Wilken JM
    Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review.
    Müller R; Tronicke L; Abel R; Lechler K
    PLoS One; 2019; 14(11):e0225032. PubMed ID: 31743353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of a flexible pylon system on functional mobility of transtibial amputees. A prospective randomized study.
    Lass R; Kickinger W; Guglia P; Kubista B; Kastner J; Windhager R; Holzer G
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):837-47. PubMed ID: 23860421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side.
    Olenšek A; Zadravec M; Burger H; Matjačić Z
    J Neuroeng Rehabil; 2021 Jul; 18(1):123. PubMed ID: 34332595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A low-power ankle-foot prosthesis for push-off enhancement.
    Mazzarini A; Fantozzi M; Papapicco V; Fagioli I; Lanotte F; Baldoni A; Dell'Agnello F; Ferrara P; Ciapetti T; Molino Lova R; Gruppioni E; Trigili E; Crea S; Vitiello N
    Wearable Technol; 2023; 4():e18. PubMed ID: 38487780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study.
    McDonald CL; Kramer PA; Morgan SJ; Halsne EG; Cheever SM; Hafner BJ
    Gait Posture; 2018 May; 62():349-354. PubMed ID: 29614468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perceptions and biomechanical effects of varying prosthetic ankle stiffness during uphill walking: A case series.
    Ármannsdóttir AL; Lecomte C; Lemaire E; Brynjólfsson S; Briem K
    Gait Posture; 2024 Feb; 108():354-360. PubMed ID: 38227995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining an Artificial Gastrocnemius and Powered Ankle Prosthesis: Effects on Transtibial Prosthesis User Gait.
    Ziemnicki DM; McDonald KA; Wolf DN; Molitor SL; Egolf JB; Gupta M; Zelik KE
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36661069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking: Physiological determinants.
    De Pauw K; Cherelle P; Roelands B; Lefeber D; Meeusen R
    Prosthet Orthot Int; 2018 Oct; 42(5):504-510. PubMed ID: 29623812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.
    Herr HM; Grabowski AM
    Proc Biol Sci; 2012 Feb; 279(1728):457-64. PubMed ID: 21752817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable-stiffness prosthesis improves biomechanics of walking across speeds compared to a passive device.
    Rogers-Bradley E; Yeon SH; Landis C; Lee DRC; Herr HM
    Sci Rep; 2024 Jul; 14(1):16521. PubMed ID: 39019986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics.
    Askew GN; McFarlane LA; Minetti AE; Buckley JG
    J Neuroeng Rehabil; 2019 Mar; 16(1):39. PubMed ID: 30871573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous relative phases of walking with an articulated passive ankle-foot prosthesis in individuals with a unilateral transfemoral and transtibial amputation: an explorative case-control study.
    Lathouwers E; Baeyens JP; Tassignon B; Gomez F; Cherelle P; Meeusen R; Vanderborght B; De Pauw K
    Biomed Eng Online; 2023 Feb; 22(1):14. PubMed ID: 36793091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological responses to multiple speed treadmill walking for Syme vs. transtibial amputation--a case report.
    Lin-Chan S; Nielsen DH; Shurr DG; Saltzman CL
    Disabil Rehabil; 2003 Dec; 25(23):1333-8. PubMed ID: 14617440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis.
    Kannape OA; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5469-5472. PubMed ID: 28269495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-distance walking effects on trans-tibial amputees compensatory gait patterns and implications on prosthetic designs and training.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Gait Posture; 2012 Feb; 35(2):328-33. PubMed ID: 22055554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device.
    Ray SF; Wurdeman SR; Takahashi KZ
    J Neuroeng Rehabil; 2018 Jan; 15(1):6. PubMed ID: 29374491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.