These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38507436)

  • 1. Integrating microbial abundance time series with fermentation dynamics of the rumen microbiome via mathematical modelling.
    Davoudkhani M; Rubino F; Creevey CJ; Ahvenjärvi S; Bayat AR; Tapio I; Belanche A; Muñoz-Tamayo R
    PLoS One; 2024; 19(3):e0298930. PubMed ID: 38507436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows.
    Morvay Y; Bannink A; France J; Kebreab E; Dijkstra J
    J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of rumen microbiota transfaunation on the growth, rumen fermentation, and microbial community of early separated Japanese Black cattle.
    Takizawa S; Shinkai T; Saito K; Fukumoto N; Arai Y; Hirai T; Maruyama M; Takeda M
    Anim Sci J; 2023; 94(1):e13876. PubMed ID: 37818871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ergot alkaloids and a mycotoxin deactivating product on in vitro ruminal fermentation using the Rumen simulation technique (RUSITEC).
    Sarich JM; Stanford K; Schwartzkopf-Genswein KS; Gruninger RJ; McAllister TA; Meale SJ; Blakley BR; Penner GB; Ribeiro GO
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35748808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics in continuous cultures of ruminal contents.
    Li MM; Ghimire S; Wenner BA; Kohn RA; Firkins JL; Gill B; Hanigan MD
    J Dairy Sci; 2022 Nov; 105(11):8879-8897. PubMed ID: 36085109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with
    Miguel M; Lee SS; Mamuad L; Choi YJ; Jeong CD; Son A; Cho KK; Kim ET; Kim SB; Lee SS
    J Microbiol Biotechnol; 2019 Jul; 29(7):1083-1095. PubMed ID: 31216841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exhaled volatile fatty acids, ruminal methane emission, and their diurnal patterns in lactating dairy cows.
    Islam MZ; Giannoukos S; Räisänen SE; Wang K; Ma X; Wahl F; Zenobi R; Niu M
    J Dairy Sci; 2023 Oct; 106(10):6849-6859. PubMed ID: 37210352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rumen fermentation of meal-fed sheep in response to diets formulated to vary in fiber and protein degradability.
    Sujani S; Gleason CB; Dos Reis BR; White RR
    J Anim Sci; 2024 Jan; 102():. PubMed ID: 38066694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in fermentation profile of the reticulorumen and hindgut, and nutrient digestion in dry cows fed concentrate-rich diets supplemented with a phytogenic feed additive.
    Castillo-Lopez E; Rivera-Chacon R; Ricci S; Reisinger N; Zebeli Q
    J Dairy Sci; 2022 Jul; 105(7):5747-5760. PubMed ID: 35599024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermented soybean meal modified the rumen microbiome to enhance the yield of milk components in Holstein cows.
    Amin AB; Zhang L; Zhang J; Mao S
    Appl Microbiol Biotechnol; 2022 Nov; 106(22):7627-7642. PubMed ID: 36264306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows.
    Bannink A; Kogut J; Dijkstra J; France J; Kebreab E; Van Vuuren AM; Tamminga S
    J Theor Biol; 2006 Jan; 238(1):36-51. PubMed ID: 16111711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.
    Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S
    J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.
    Storm AC; Kristensen NB; Hanigan MD
    J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TECHNICAL NOTE: Analysis of volatile fatty acids in rumen fluid by gas chromatography mass spectrometry using a dimethyl carbonate extraction.
    Foote AP
    J Anim Sci; 2022 Aug; 100(8):. PubMed ID: 35660871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.
    Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ
    J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene function adjustment for carbohydrate metabolism and enrichment of rumen microbiota with antibiotic resistance genes during subacute rumen acidosis induced by a high-grain diet in lactating dairy cows.
    Mu YY; Qi WP; Zhang T; Zhang JY; Mao SY
    J Dairy Sci; 2021 Feb; 104(2):2087-2105. PubMed ID: 33358156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 2-hydroxy-4-(methylthio)butanoate (HMTBa) on milk fat, rumen environment and biohydrogenation, and rumen protozoa in lactating cows fed diets with increased risk for milk fat depression.
    Baldin M; Garcia D; Zanton GI; Hao F; Patterson AD; Harvatine KJ
    J Dairy Sci; 2022 Sep; 105(9):7446-7461. PubMed ID: 35931483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 2. Dairy goats.
    Romero P; Huang R; Jiménez E; Palma-Hidalgo JM; Ungerfeld EM; Popova M; Morgavi DP; Belanche A; Yáñez-Ruiz DR
    Animal; 2023 May; 17(5):100789. PubMed ID: 37087998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.