These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38507499)

  • 1. Sulfur disproportionation in deep COHS slab fluids drives mantle wedge oxidation.
    Maffeis A; Frezzotti ML; Connolly JAD; Castelli D; Ferrando S
    Sci Adv; 2024 Mar; 10(12):eadj2770. PubMed ID: 38507499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly oxidising fluids generated during serpentinite breakdown in subduction zones.
    Debret B; Sverjensky DA
    Sci Rep; 2017 Sep; 7(1):10351. PubMed ID: 28871200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.
    Kawamoto T; Kanzaki M; Mibe K; Matsukage KN; Ono S
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18695-700. PubMed ID: 23112158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subducting serpentinites release reduced, not oxidized, aqueous fluids.
    Piccoli F; Hermann J; Pettke T; Connolly JAD; Kempf ED; Vieira Duarte JF
    Sci Rep; 2019 Dec; 9(1):19573. PubMed ID: 31862932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle.
    Zhang Y; Gazel E; Gaetani GA; Klein F
    Sci Adv; 2021 Nov; 7(48):eabj2515. PubMed ID: 34826248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective.
    Li JL; Schwarzenbach EM; John T; Ague JJ; Huang F; Gao J; Klemd R; Whitehouse MJ; Wang XS
    Nat Commun; 2020 Jan; 11(1):514. PubMed ID: 31980597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive carbon storage in convergent margins initiated by subduction of limestone.
    Chen C; Förster MW; Foley SF; Liu Y
    Nat Commun; 2021 Jul; 12(1):4463. PubMed ID: 34294696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.
    Pons ML; Debret B; Bouilhol P; Delacour A; Williams H
    Nat Commun; 2016 Dec; 7():13794. PubMed ID: 27982033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction.
    Rielli A; Tomkins AG; Nebel O; Brugger J; Etschmann B; Paterson D
    Sci Rep; 2018 Nov; 8(1):16411. PubMed ID: 30401916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic variables and water transport control the formation and location of arc volcanoes.
    Grove TL; Till CB; Lev E; Chatterjee N; Médard E
    Nature; 2009 Jun; 459(7247):694-7. PubMed ID: 19494913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochemical evidence for mélange melting in global arcs.
    Nielsen SG; Marschall HR
    Sci Adv; 2017 Apr; 3(4):e1602402. PubMed ID: 28435882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mantle oxidation state and its relationship to tectonic environment and fluid speciation.
    Wood BJ; Bryndzia LT; Johnson KE
    Science; 1990 Apr; 248(4953):337-45. PubMed ID: 17784487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonates and intermediate-depth seismicity: Stable and unstable shear in altered subducting plates and overlying mantle.
    Prakash A; Holyoke CW; Kelemen PB; Kirby SH; Kronenberg AK; Lamb WM
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2219076120. PubMed ID: 37186835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles.
    Chen C; Förster MW; Foley SF; Shcheka SS
    Nature; 2023 Aug; 620(7974):576-581. PubMed ID: 37558874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.
    Kawamoto T; Yoshikawa M; Kumagai Y; Mirabueno MH; Okuno M; Kobayashi T
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9663-8. PubMed ID: 23716664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing the subducting Pacific slab to the mantle transition zone with hydrogen isotopes.
    Kuritani T; Shimizu K; Ushikubo T; Xia QK; Liu J; Nakagawa M; Taniuchi H; Sato E; Doi N
    Sci Rep; 2021 Sep; 11(1):18755. PubMed ID: 34548585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones.
    Wang SJ; Li SG
    Natl Sci Rev; 2022 Jun; 9(6):nwac036. PubMed ID: 35673532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga.
    Meng X; Kleinsasser JM; Richards JP; Tapster SR; Jugo PJ; Simon AC; Kontak DJ; Robb L; Bybee GM; Marsh JH; Stern RA
    Nat Commun; 2021 Apr; 12(1):2189. PubMed ID: 33850122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications for metal and volatile cycles from the pH of subduction zone fluids.
    Galvez ME; Connolly JA; Manning CE
    Nature; 2016 Nov; 539(7629):420-424. PubMed ID: 27853207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc.
    Li HY; Zhao RP; Li J; Tamura Y; Spencer C; Stern RJ; Ryan JG; Xu YG
    Nat Commun; 2021 Oct; 12(1):6015. PubMed ID: 34650082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.