These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38507822)

  • 21. Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.
    Joo S; Kim K; Kwon O; Oh J; Kim HJ; Zhang L; Zhou J; Wang JQ; Jeong HY; Han JW; Kim G
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15912-15919. PubMed ID: 33961725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen Production from Gadolinium-Promoted Yttrium-Zirconium-Supported Ni Catalysts through Dry Methane Reforming.
    Fakeeha AH; Al-Fatesh AS; Srivastava VK; Ibrahim AA; Abahussain AAM; Abu-Dahrieh JK; Alotibi MF; Kumar R
    ACS Omega; 2023 Jun; 8(24):22108-22120. PubMed ID: 37360458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH
    le Saché E; Alvarez Moreno A; Reina TR
    Front Chem; 2021; 9():672419. PubMed ID: 33937208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane.
    Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A
    Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using greenhouse gases in the synthesis gas production processes: Thermodynamic conditions.
    Szczygieł J; Chojnacka K; Skrzypczak D; Izydorczyk G; Moustakas K; Kułażyński M
    J Environ Manage; 2023 Jan; 325(Pt A):116463. PubMed ID: 36270132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated CO
    Bhaskaran A; Singh SA; Reddy BM; Roy S
    Langmuir; 2024 Jul; 40(29):14766-14778. PubMed ID: 38978485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System.
    Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methane Dry Reforming by Ni-Cu Nanoalloys Anchored on Periclase-Phase MgAlO
    Xiao Z; Hou F; Zhang J; Zheng Q; Xu J; Pan L; Wang L; Zou J; Zhang X; Li G
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48838-48854. PubMed ID: 34613699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rh/InGaN
    Li Y; Li J; Yu T; Qiu L; Hasan SMN; Yao L; Pan H; Arafin S; Sadaf SM; Zhu L; Zhou B
    Sci Bull (Beijing); 2024 May; 69(10):1400-1409. PubMed ID: 38402030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nickel-based cerium zirconate inorganic complex structures for CO
    Martín-Espejo JL; Merkouri LP; Gándara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L
    J Environ Sci (China); 2024 Jun; 140():12-23. PubMed ID: 38331494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding Coke Deposition Vis-à-Vis DRM Activity over Magnesia-Alumina Supported Ni-Fe, Ni-Co, Ni-Ce, and Ni-Sr Catalysts.
    Alanazi YM; Patel N; Fakeeha AH; Abu-Dahrieh J; Ibrahim AA; Abasaeed AE; Kumar R; Al-Fatesh A
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ni
    Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Coke Resistance of Ni-Ceria Catalysts for Partial Oxidation of Methane to Syngas: Experimental and Computational Study.
    Khurana D; Dahiya N; Negi S; Bordoloi A; Ali Haider M; Bal R; Khan TS
    Chem Asian J; 2023 Apr; 18(7):e202201298. PubMed ID: 36797847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature.
    Zhao YX; Yang B; Li HF; Zhang Y; Yang Y; Liu QY; Xu HG; Zheng WJ; He SG
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):21216-21223. PubMed ID: 32767516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient solar-driven CO
    Liu X; Ling Y; Sun C; Shi H; Zheng H; Song C; Gao K; Dang C; Sun N; Xuan Y; Ding Y
    Fundam Res; 2024 Jan; 4(1):131-139. PubMed ID: 38933849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO
    Wang H; Cui G; Lu H; Li Z; Wang L; Meng H; Li J; Yan H; Yang Y; Wei M
    Nat Commun; 2024 May; 15(1):3765. PubMed ID: 38704402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel CO
    Challiwala MS; Choudhury HA; Wang D; El-Halwagi MM; Weitz E; Elbashir NO
    Sci Rep; 2021 Jan; 11(1):1417. PubMed ID: 33446882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous production of syngas and carbon nanotubes from CO
    Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.