BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38507972)

  • 1. Hybrid molecules synergistically mitigate ferroptosis and amyloid-associated toxicities in Alzheimer's disease.
    Padhi D; Baruah P; Ramesh M; Moorthy H; Govindaraju T
    Redox Biol; 2024 May; 71():103119. PubMed ID: 38507972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer's disease.
    Moorthy H; Ramesh M; Padhi D; Baruah P; Govindaraju T
    Mater Horiz; 2024 Jul; 11(13):3082-3089. PubMed ID: 38647314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-β induced ferroptosis in Alzheimer's disease.
    Baruah P; Moorthy H; Ramesh M; Padhi D; Govindaraju T
    Chem Sci; 2023 Sep; 14(35):9427-9438. PubMed ID: 37712018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penthorum chinense Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans models of Alzheimer's disease.
    Yong YY; Yan L; Wang BD; Fan DS; Guo MS; Yu L; Wu JM; Qin DL; Law BY; Wong VK; Yu CL; Zhou XG; Wu AG
    Phytomedicine; 2024 May; 127():155463. PubMed ID: 38452694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydroxy stilbene glycoside ameliorates Alzheimer's disease in APP/PS1 mice via glutathione peroxidase related ferroptosis.
    Gao Y; Li J; Wu Q; Wang S; Yang S; Li X; Chen N; Li L; Zhang L
    Int Immunopharmacol; 2021 Oct; 99():108002. PubMed ID: 34333354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LINC00472 Regulates Ferroptosis of Neurons in Alzheimer's Disease via FOXO1.
    Lin P; Wang J; Li Y; Li G; Wang Y
    Dement Geriatr Cogn Disord; 2024; 53(3):107-118. PubMed ID: 38574473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferroptosis: a potential therapeutic target for Alzheimer's disease.
    Yang L; Nao J
    Rev Neurosci; 2023 Jul; 34(5):573-598. PubMed ID: 36514247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protofibrils of Amyloid-β are Important Targets of a Disease-Modifying Approach for Alzheimer's Disease.
    Ono K; Tsuji M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32023927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation.
    Li L; Li WJ; Zheng XR; Liu QL; Du Q; Lai YJ; Liu SQ
    Mol Med; 2022 Jan; 28(1):11. PubMed ID: 35093024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed Death of Microglia in Alzheimer's Disease: Autophagy, Ferroptosis, and Pyroptosis.
    Qiu Z; Zhang H; Xia M; Gu J; Guo K; Wang H; Miao C
    J Prev Alzheimers Dis; 2023; 10(1):95-103. PubMed ID: 36641613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review.
    Zhao D; Yang K; Guo H; Zeng J; Wang S; Xu H; Ge A; Zeng L; Chen S; Ge J
    Biomed Pharmacother; 2023 Aug; 164():114312. PubMed ID: 37210894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of FXN overexpression on ferroptosis in L-Glu-induced SH-SY5Y cells.
    Wang M; Xuan T; Li H; An J; Hao T; Cheng J
    Acta Histochem; 2024 Jan; 126(1):152135. PubMed ID: 38266318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis.
    Wang M; Tang G; Zhou C; Guo H; Hu Z; Hu Q; Li G
    Chem Biol Interact; 2023 Apr; 375():110387. PubMed ID: 36758888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-liquid phase separation in Alzheimer's disease.
    Fu Q; Zhang B; Chen X; Chu L
    J Mol Med (Berl); 2024 Feb; 102(2):167-181. PubMed ID: 38167731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The function of sphingolipids in different pathogenesis of Alzheimer's disease: A comprehensive review.
    Wang X; Li H; Sheng Y; He B; Liu Z; Li W; Yu S; Wang J; Zhang Y; Chen J; Qin L; Meng X
    Biomed Pharmacother; 2024 Feb; 171():116071. PubMed ID: 38183741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The zinc dyshomeostasis hypothesis of Alzheimer's disease.
    Craddock TJ; Tuszynski JA; Chopra D; Casey N; Goldstein LE; Hameroff SR; Tanzi RE
    PLoS One; 2012; 7(3):e33552. PubMed ID: 22457776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Dysregulation in Alzheimer's Disease: LA-ICP-MS Bioimaging of the Distribution of Iron and Ferroportin in the CA1 Region of the Human Hippocampus.
    Junceda S; Cruz-Alonso M; Fernandez B; Pereiro R; Martínez-Pinilla E; Navarro A
    Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Iron Metabolism, Lipid Metabolism, and Redox Homeostasis in Alzheimer's Disease: from the Perspective of Ferroptosis.
    Wu L; Xian X; Tan Z; Dong F; Xu G; Zhang M; Zhang F
    Mol Neurobiol; 2023 May; 60(5):2832-2850. PubMed ID: 36735178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease.
    Bhatia V; Sharma S
    J Neurol Sci; 2021 Feb; 421():117253. PubMed ID: 33476985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.