These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38508106)
21. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J; Lhotský O; Cajthaml T Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106 [TBL] [Abstract][Full Text] [Related]
22. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Su H; Fang Z; Tsang PE; Zheng L; Cheng W; Fang J; Zhao D J Hazard Mater; 2016 Nov; 318():533-540. PubMed ID: 27469041 [TBL] [Abstract][Full Text] [Related]
23. Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Lacalle RG; Garbisu C; Becerril JM Environ Sci Pollut Res Int; 2020 Sep; 27(25):31726-31736. PubMed ID: 32504423 [TBL] [Abstract][Full Text] [Related]
24. Superior reduction and immobilization of Cr(VI) in soil utilizing sulfide nanoscale zero-valent iron supported by phosphoric acid-modified biochar: Efficiency and mechanism investigation. Li K; Xu W; Song H; Bi F; Li Y; Jiang Z; Tao Y; Qu J; Zhang Y Sci Total Environ; 2024 Jan; 907():168133. PubMed ID: 37890623 [TBL] [Abstract][Full Text] [Related]
25. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Zhang R; Zhang N; Fang Z Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164 [TBL] [Abstract][Full Text] [Related]
26. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Brasili E; Bavasso I; Petruccelli V; Vilardi G; Valletta A; Dal Bosco C; Gentili A; Pasqua G; Di Palma L Sci Rep; 2020 Feb; 10(1):1920. PubMed ID: 32024866 [TBL] [Abstract][Full Text] [Related]
27. Dual Regulatory Role of Tong J; Wu H; Jiang X; Ruan C; Li W; Zhang H; Pan S; Wang J; Ren J; Zhang C; Shi J Environ Sci Technol; 2024 Jan; 58(1):603-616. PubMed ID: 38109294 [TBL] [Abstract][Full Text] [Related]
28. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Qian L; Shang X; Zhang B; Zhang W; Su A; Chen Y; Ouyang D; Han L; Yan J; Chen M Chemosphere; 2019 Jan; 215():739-745. PubMed ID: 30347367 [TBL] [Abstract][Full Text] [Related]
29. Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Gil-Díaz M; Pérez RA; Alonso J; Miguel E; Diez-Pascual S; Lobo MC Sci Rep; 2022 Mar; 12(1):3541. PubMed ID: 35241772 [TBL] [Abstract][Full Text] [Related]
30. Cr(VI) removal from wastewater using nano zero-valent iron and chromium-reducing bacteria. Tan X; Yang J; Shaaban M; Cai Y; Wang B; Peng QA Environ Sci Pollut Res Int; 2023 Nov; 30(53):113323-113334. PubMed ID: 37848784 [TBL] [Abstract][Full Text] [Related]
31. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Singh R; Misra V; Singh RP Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721 [TBL] [Abstract][Full Text] [Related]
32. The colonization of Penicillium oxalicum SL2 on rice root surface increased Pb interception capacity of iron plaque and decreased Pb uptake by roots. Tong J; Wu H; Jiang X; Wang J; Pang J; Zhang H; Xin Z; Shi J Sci Total Environ; 2024 May; 925():171770. PubMed ID: 38499093 [TBL] [Abstract][Full Text] [Related]
33. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation. Liu X; Zhang S; Zhang X; Guo H; Lou Z; Zhang W; Chen Z Chemosphere; 2022 Oct; 305():135393. PubMed ID: 35724719 [TBL] [Abstract][Full Text] [Related]
34. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal. Qian L; Zhang W; Yan J; Han L; Chen Y; Ouyang D; Chen M Environ Pollut; 2017 Apr; 223():153-160. PubMed ID: 28110906 [TBL] [Abstract][Full Text] [Related]
35. Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites. Jin Y; Wang Y; Li X; Luo T; Ma Y; Wang B; Liang H Sci Total Environ; 2023 Apr; 867():161344. PubMed ID: 36610630 [TBL] [Abstract][Full Text] [Related]
36. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test. Němeček J; Pokorný P; Lacinová L; Černík M; Masopustová Z; Lhotský O; Filipová A; Cajthaml T J Hazard Mater; 2015 Dec; 300():670-679. PubMed ID: 26292054 [TBL] [Abstract][Full Text] [Related]
37. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Huang XY; Ling L; Zhang WX J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172 [TBL] [Abstract][Full Text] [Related]
38. Remediation of Cr(VI)-Contaminated Soil by Biochar-Supported Nanoscale Zero-Valent Iron and the Consequences for Indigenous Microbial Communities. Yang J; Tan X; Shaaban M; Cai Y; Wang B; Peng Q Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234667 [TBL] [Abstract][Full Text] [Related]
39. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron. Qian L; Liu S; Zhang W; Chen Y; Ouyang D; Han L; Yan J; Chen M J Colloid Interface Sci; 2019 Jan; 533():428-436. PubMed ID: 30172153 [TBL] [Abstract][Full Text] [Related]
40. Nano zero-valent iron enhances the absorption and transport of chromium in rice (Oryza sativa L.): Implication for Cr risks management in paddy fields. Liu T; Guan Z; Li J; Ao M; Sun S; Deng T; Wang S; Tang Y; Lin Q; Ni Z; Qiu R Sci Total Environ; 2023 Sep; 891():164232. PubMed ID: 37225094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]