These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38508250)

  • 1. Evaluating the success of vegetation restoration in rewilded salt marshes.
    Carneiro I; Carrasco AR; Didderen K; Sousa AI
    Sci Total Environ; 2024 May; 926():171699. PubMed ID: 38508250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term impact of sediment addition on plants and invertebrates in a southern California salt marsh.
    McAtee KJ; Thorne KM; Whitcraft CR
    PLoS One; 2020; 15(11):e0240597. PubMed ID: 33151998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ability of salt marsh plants for TBT remediation in sediments.
    Carvalho PN; Basto MC; Silva MF; Machado A; Bordalo AA; Vasconcelos MT
    Environ Sci Pollut Res Int; 2010 Jul; 17(6):1279-86. PubMed ID: 20217262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of hydraulic restoration of San Pablo Marsh, California.
    Grismer ME; Kollar J; Syder J
    Environ Monit Assess; 2004 Nov; 98(1-3):69-92. PubMed ID: 15473530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of biogeomorphic systems by creating windows of opportunity to support natural establishment processes.
    Fivash GS; Temmink RJM; D'Angelo M; van Dalen J; Lengkeek W; Didderen K; Ballio F; van der Heide T; Bouma TJ
    Ecol Appl; 2021 Jul; 31(5):e02333. PubMed ID: 33768651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt marsh restoration: an overview of techniques and success indicators.
    Billah MM; Bhuiyan MKA; Islam MA; Das J; Hoque AR
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15347-15363. PubMed ID: 34989993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Blue Carbon' and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal).
    Sousa AI; Santos DB; Silva EF; Sousa LP; Cleary DF; Soares AM; Lillebø AI
    Sci Rep; 2017 Jan; 7():41225. PubMed ID: 28120885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-analysis of salt marsh vegetation impacts and recovery: a synthesis following the Deepwater Horizon oil spill.
    Zengel S; Weaver J; Mendelssohn IA; Graham SA; Lin Q; Hester MW; Willis JM; Silliman BR; Fleeger JW; McClenachan G; Rabalais NN; Turner RE; Hughes AR; Cebrian J; Deis DR; Rutherford N; Roberts BJ
    Ecol Appl; 2022 Jan; 32(1):e02489. PubMed ID: 34741358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenological development stages variation versus mercury tolerance, accumulation, and allocation in salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal).
    Anjum NA; Ahmad I; Válega M; Figueira E; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3910-22. PubMed ID: 23184133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain.
    Luque CJ; Vaca F; García-Trapote A; Hierro A; Bolívar JP; Castellanos EM
    J Environ Radioact; 2015 Dec; 150():179-88. PubMed ID: 26334596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing long-term outcomes of tidal restoration in New England salt marshes.
    Kutcher TE; Raposa KB
    J Environ Manage; 2023 Jul; 338():117832. PubMed ID: 37023604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbance of sedimentary processes in tidal salt marshes invaded by exotic vegetation.
    Choi SM; Seo JY; Jeong SW; Lee MJ; Ha HK
    Sci Total Environ; 2021 Dec; 799():149303. PubMed ID: 34358748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of benthic algal and animal communities by salt marsh plants: impact of shading.
    Whitcraft CR; Levin LA
    Ecology; 2007 Apr; 88(4):904-17. PubMed ID: 17536707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility versus retention of mercury in bare and salt marsh sediments of a recovering coastal lagoon (Ria de Aveiro, Portugal).
    Oliveira VH; Coelho JP; Reis AT; Vale C; Bernardes C; Pereira ME
    Mar Pollut Bull; 2018 Oct; 135():249-255. PubMed ID: 30301036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down and sideways: Herbivory and cross-ecosystem connectivity shape restoration success at the salt marsh-upland ecotone.
    Wasson K; Tanner KE; Woofolk A; McCain S; Suraci JP
    PLoS One; 2021; 16(2):e0247374. PubMed ID: 33617558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes.
    Curado G; Rubio-Casal AE; Figueroa E; Grewell BJ; Castillo JM
    Environ Monit Assess; 2013 Oct; 185(10):8439-49. PubMed ID: 23591677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides.
    Couto N; Ferreira AR; Guedes P; Mateus E; Ribeiro AB
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35928-35935. PubMed ID: 30191527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.