BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38508270)

  • 1. Research on the decomposition mechanisms of lithium silicate ores with different crystal structures by autotrophic and heterotrophic bacteria.
    Wang X; Zhao X; Zhou Y; Zhang X; Xu C; Duan H; Wang R; Lu X
    Sci Total Environ; 2024 May; 925():171762. PubMed ID: 38508270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium extraction from typical lithium silicate ores by two bacteria with different metabolic characteristics: Experiments, mechanism and significance.
    Zhao X; Zhou Y; Ding C; Wang X; Zhang X; Wang R; Lu X
    J Environ Manage; 2023 Dec; 347():119082. PubMed ID: 37783078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.
    Jeremic S; Beškoski VP; Djokic L; Vasiljevic B; Vrvić MM; Avdalović J; Gojgić Cvijović G; Beškoski LS; Nikodinovic-Runic J
    J Environ Manage; 2016 May; 172():151-61. PubMed ID: 26942859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three different bioleaching systems for Li recovery from lepidolite.
    Sedlakova-Kadukova J; Marcincakova R; Luptakova A; Vojtko M; Fujda M; Pristas P
    Sci Rep; 2020 Sep; 10(1):14594. PubMed ID: 32884068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical investigations of noble metal-bearing ores: Synchrotron-based micro-analyses and microcosm bioleaching studies.
    Brinza L; Ahmed I; Cismasiu CM; Ardelean I; Breaban IG; Doroftei F; Ignatyev K; Moisescu C; Neamtu M
    Chemosphere; 2021 May; 270():129388. PubMed ID: 33423005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of organic acids on pentlandite bioleaching by
    Giese EC
    3 Biotech; 2021 Apr; 11(4):165. PubMed ID: 33786282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments.
    Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X
    Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries.
    Cai X; Tian L; Chen C; Huang W; Yu Y; Liu C; Yang B; Lu X; Mao Y
    Ecotoxicol Environ Saf; 2021 Oct; 223():112592. PubMed ID: 34364128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.
    Hu Q; Guo X; Liang Y; Hao X; Ma L; Yin H; Liu X
    Res Microbiol; 2015; 166(6):525-34. PubMed ID: 26117598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomining: metal recovery from ores with microorganisms.
    Schippers A; Hedrich S; Vasters J; Drobe M; Sand W; Willscher S
    Adv Biochem Eng Biotechnol; 2014; 141():1-47. PubMed ID: 23793914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.
    Sand W; Gehrke T
    Res Microbiol; 2006; 157(1):49-56. PubMed ID: 16431087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments.
    Banerjee PC
    Indian J Exp Biol; 2004 Jan; 42(1):9-25. PubMed ID: 15274476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review.
    Biswal BK; Balasubramanian R
    Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicate mineral dissolution during heap bioleaching.
    Dopson M; Halinen AK; Rahunen N; Boström D; Sundkvist JE; Riekkola-Vanhanen M; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2008 Mar; 99(4):811-20. PubMed ID: 17705245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues.
    Kremser K; Maltschnig M; Schön H; Jandric A; Gajdosik M; Vaculovic T; Kucera J; Guebitz GM
    Waste Manag; 2022 May; 144():182-190. PubMed ID: 35378357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Newly Isolated
    Vardanyan N; Badalyan H; Markosyan L; Vardanyan A; Zhang R; Sand W
    Front Microbiol; 2020; 11():1802. PubMed ID: 32849411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery.
    Guo X; Chen S; Han Y; Hao C; Feng X; Zhang B
    J Environ Manage; 2023 Jun; 336():117615. PubMed ID: 36893541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.