These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Automatic Vertebral Body Segmentation Based on Deep Learning of Dixon Images for Bone Marrow Fat Fraction Quantification. Zhou J; Damasceno PF; Chachad R; Cheung JR; Ballatori A; Lotz JC; Lazar AA; Link TM; Fields AJ; Krug R Front Endocrinol (Lausanne); 2020; 11():612. PubMed ID: 32982989 [No Abstract] [Full Text] [Related]
3. Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning. Ataloglou D; Dimou A; Zarpalas D; Daras P Neuroinformatics; 2019 Oct; 17(4):563-582. PubMed ID: 30877605 [TBL] [Abstract][Full Text] [Related]
4. Computerized Characterization of Spinal Structures on MRI and Clinical Significance of 3D Reconstruction of Lumbosacral Intervertebral Foramen. Liu Z; Su Z; Wang M; Chen T; Cui Z; Chen X; Li S; Feng Q; Pang S; Lu H Pain Physician; 2022 Jan; 25(1):E27-E35. PubMed ID: 35051149 [TBL] [Abstract][Full Text] [Related]
5. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis. Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632 [TBL] [Abstract][Full Text] [Related]
6. Semi-supervised hybrid spine network for segmentation of spine MR images. Huang M; Zhou S; Chen X; Lai H; Feng Q Comput Med Imaging Graph; 2023 Jul; 107():102245. PubMed ID: 37245416 [TBL] [Abstract][Full Text] [Related]
7. Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation. Kuang X; Cheung JPY; Wong KK; Lam WY; Lam CH; Choy RW; Cheng CP; Wu H; Yang C; Wang K; Li Y; Zhang T Comput Med Imaging Graph; 2022 Jul; 99():102091. PubMed ID: 35803034 [TBL] [Abstract][Full Text] [Related]
8. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen. Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964 [TBL] [Abstract][Full Text] [Related]
9. Spine muscle auto segmentation techniques in MRI imaging: a systematic review. Kim HB; Kim HS; Kim SJ; Yoo JI BMC Musculoskelet Disord; 2024 Sep; 25(1):716. PubMed ID: 39243080 [TBL] [Abstract][Full Text] [Related]
10. Fully automatic segmentation and objective assessment of atrial scars for long-standing persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Yang G; Zhuang X; Khan H; Haldar S; Nyktari E; Li L; Wage R; Ye X; Slabaugh G; Mohiaddin R; Wong T; Keegan J; Firmin D Med Phys; 2018 Apr; 45(4):1562-1576. PubMed ID: 29480931 [TBL] [Abstract][Full Text] [Related]
11. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693 [TBL] [Abstract][Full Text] [Related]
12. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
13. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors. Kavur AE; Gezer NS; Barış M; Şahin Y; Özkan S; Baydar B; Yüksel U; Kılıkçıer Ç; Olut Ş; Bozdağı Akar G; Ünal G; Dicle O; Selver MA Diagn Interv Radiol; 2020 Jan; 26(1):11-21. PubMed ID: 31904568 [TBL] [Abstract][Full Text] [Related]
14. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D; Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724 [TBL] [Abstract][Full Text] [Related]
15. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
16. Spinal Cord Segmentation by One Dimensional Normalized Template Matching: A Novel, Quantitative Technique to Analyze Advanced Magnetic Resonance Imaging Data. Cadotte A; Cadotte DW; Livne M; Cohen-Adad J; Fleet D; Mikulis D; Fehlings MG PLoS One; 2015; 10(10):e0139323. PubMed ID: 26445367 [TBL] [Abstract][Full Text] [Related]
17. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms. Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085 [TBL] [Abstract][Full Text] [Related]
18. Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net. Xu J; Wang S; Zhou Z; Liu J; Jiang X; Chen X Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1457-1465. PubMed ID: 32676871 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI. Hess M; Allaire B; Gao KT; Tibrewala R; Inamdar G; Bharadwaj U; Chin C; Pedoia V; Bouxsein M; Anderson D; Majumdar S Pain Med; 2023 Aug; 24(Suppl 1):S139-S148. PubMed ID: 36315069 [TBL] [Abstract][Full Text] [Related]