BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38508768)

  • 21. Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris.
    Rosa LT; Dix SR; Rafferty JB; Kelly DJ
    FEBS J; 2017 Dec; 284(24):4262-4277. PubMed ID: 29082669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternate pathways for folding in the flavodoxin fold family revealed by a nucleation-growth model.
    Nelson ED; Grishin NV
    J Mol Biol; 2006 May; 358(3):646-53. PubMed ID: 16563435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and structure of an equilibrium protein folding intermediate: a hint into dynamical regions of proteins.
    Ayuso-Tejedor S; Angarica VE; Bueno M; Campos LA; Abián O; Bernadó P; Sancho J; Jiménez MA
    J Mol Biol; 2010 Jul; 400(4):922-34. PubMed ID: 20553732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recombinant expression and characterization of N-acetylglucosaminyltransferase I derived from Nicotiana tabacum.
    Dohi K; Isoyama-Tanaka J; Tokuda T; Fujiyama K
    J Biosci Bioeng; 2010 Apr; 109(4):388-91. PubMed ID: 20226382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stalled flavodoxin binds its cofactor while fully exposed outside the ribosome.
    Houwman JA; Westphal AH; van Berkel WJ; van Mierlo CP
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1317-24. PubMed ID: 26073784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Closure of a tyrosine/tryptophan aromatic gate leads to a compact fold in apo flavodoxin.
    Genzor CG; Perales-Alcón A; Sancho J; Romero A
    Nat Struct Biol; 1996 Apr; 3(4):329-32. PubMed ID: 8599758
    [No Abstract]   [Full Text] [Related]  

  • 27. Comparison of the refined crystal structures of wild-type (1.34 A) flavodoxin from Desulfovibrio vulgaris and the S35C mutant (1.44 A) at 100 K.
    Artali R; Bombieri G; Meneghetti F; Gilardi G; Sadeghi SJ; Cavazzini D; Rossi GL
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1787-92. PubMed ID: 12351822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The conserved Candida albicans CA3427 gene product defines a new family of proteins exhibiting the generic periplasmic binding protein structural fold.
    Santini S; Claverie JM; Mouz N; Rousselle T; Maza C; Monchois V; Abergel C
    PLoS One; 2011 Apr; 6(4):e18528. PubMed ID: 21494601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retracing the evolution of a modern periplasmic binding protein.
    Michel F; Romero-Romero S; Höcker B
    Protein Sci; 2023 Nov; 32(11):e4793. PubMed ID: 37788980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structures of human lysosomal EPDR1 reveal homology with the superfamily of bacterial lipoprotein transporters.
    Wei Y; Xiong ZJ; Li J; Zou C; Cairo CW; Klassen JS; Privé GG
    Commun Biol; 2019; 2():52. PubMed ID: 30729188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structure of the sulfite reductase flavodoxin-like domain from Escherichia coli.
    Sibille N; Blackledge M; Brutscher B; Covès J; Bersch B
    Biochemistry; 2005 Jun; 44(25):9086-95. PubMed ID: 15966732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution.
    Ingelman M; Bianchi V; Eklund H
    J Mol Biol; 1997 Apr; 268(1):147-57. PubMed ID: 9149148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studying protein fold evolution with hybrids of differently folded homologs.
    Eaton KV; Anderson WJ; Dubrava MS; Kumirov VK; Dykstra EM; Cordes MH
    Protein Eng Des Sel; 2015 Aug; 28(8):241-50. PubMed ID: 25991865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of a defective folding protein.
    Saul FA; Mourez M; Vulliez-Le Normand B; Sassoon N; Bentley GA; Betton JM
    Protein Sci; 2003 Mar; 12(3):577-85. PubMed ID: 12592028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the domain pairing in chimeric antibodies.
    Teplyakov A; Obmolova G; Carton JM; Gao W; Zhao Y; Gilliland GL
    Mol Immunol; 2010 Aug; 47(14):2422-6. PubMed ID: 20554002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods.
    Ha JH; Presti MF; Loh SN
    Biophys J; 2019 Jul; 117(1):56-65. PubMed ID: 31221439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based mechanism of ligand binding for periplasmic solute-binding protein of the Bug family.
    Herrou J; Bompard C; Antoine R; Leroy A; Rucktooa P; Hot D; Huvent I; Locht C; Villeret V; Jacob-Dubuisson F
    J Mol Biol; 2007 Nov; 373(4):954-64. PubMed ID: 17870093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold.
    Cuneo MJ; Beese LS; Hellinga HW
    J Biol Chem; 2009 Nov; 284(48):33217-23. PubMed ID: 19801540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cofactor-induced reversible folding of Flavodoxin-4 from Lactobacillus acidophilus.
    Dutta SK; Serrano P; Geralt M; Axelrod HL; Xu Q; Lesley SA; Godzik A; Deacon AM; Elsliger MA; Wilson IA; Wüthrich K
    Protein Sci; 2015 Oct; 24(10):1600-8. PubMed ID: 26177955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.