BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38509083)

  • 1. Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction.
    Li X; Zhu Q; Zhao C; Duan X; Zhao B; Zhang X; Ma H; Sun J; Lin W
    Nat Commun; 2024 Mar; 15(1):2506. PubMed ID: 38509083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.
    Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH
    Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine-learning inference of fluid variables from data using reservoir computing.
    Nakai K; Saiki Y
    Phys Rev E; 2018 Aug; 98(2-1):023111. PubMed ID: 30253537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing.
    Li XZ; Yang B; Zhao S; Gu Y; Zhao M
    Opt Express; 2023 Nov; 31(24):40592-40603. PubMed ID: 38041355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Windowed Granger causal inference strategy improves discovery of gene regulatory networks.
    Finkle JD; Wu JJ; Bagheri N
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2252-2257. PubMed ID: 29440433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.
    Li XZ; Sheng B; Zhang M
    Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing.
    Cunillera A; Soriano MC; Fischer I
    Chaos; 2019 Nov; 29(11):113113. PubMed ID: 31779359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting nonsmooth chaotic dynamics by reservoir computing.
    Shi L; Wang H; Wang S; Du R; Qu SX
    Phys Rev E; 2024 Jan; 109(1-1):014214. PubMed ID: 38366462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Configured quantum reservoir computing for multi-task machine learning.
    Xia W; Zou J; Qiu X; Chen F; Zhu B; Li C; Deng DL; Li X
    Sci Bull (Beijing); 2023 Oct; 68(20):2321-2329. PubMed ID: 37679257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridizing traditional and next-generation reservoir computing to accurately and efficiently forecast dynamical systems.
    Chepuri R; Amzalag D; Antonsen TM; Girvan M
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38838103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging opportunities and challenges for the future of reservoir computing.
    Yan M; Huang C; Bienstman P; Tino P; Lin W; Sun J
    Nat Commun; 2024 Mar; 15(1):2056. PubMed ID: 38448438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tipping Point Detection Using Reservoir Computing.
    Li X; Zhu Q; Zhao C; Qian X; Zhang X; Duan X; Lin W
    Research (Wash D C); 2023; 6():0174. PubMed ID: 37404384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing.
    Duncan D; Räth C
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptable reservoir computing: A paradigm for model-free data-driven prediction of critical transitions in nonlinear dynamical systems.
    Panahi S; Lai YC
    Chaos; 2024 May; 34(5):. PubMed ID: 38717410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.