BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38509245)

  • 1. Surface modification and coherence in lithium niobate SAW resonators.
    Gruenke RG; Hitchcock OA; Wollack EA; Sarabalis CJ; Jankowski M; McKenna TP; Lee NR; Safavi-Naeini AH
    Sci Rep; 2024 Mar; 14(1):6663. PubMed ID: 38509245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate.
    Zhang ZD; Yu SY; Xu H; Lu MH; Chen YF
    Adv Mater; 2024 May; 36(21):e2312861. PubMed ID: 38340067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-sensitivity non-cooled near-infrared detector based on lithium niobate surface acoustic wave resonators combined with MXene Ti
    Feng L; Liu G; Guo P; Jiang Y; Ma X; Chen Y; Luo J
    Opt Express; 2023 Jul; 31(16):25829-25839. PubMed ID: 37710458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium Niobate MEMS Antisymmetric Lamb Wave Resonators with Support Structures.
    Zhang Y; Jiang Y; Tang C; Deng C; Du F; He J; Hu Q; Wang Q; Yu H; Wang Z
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications.
    Cai L; Mahmoud A; Piazza G
    Opt Express; 2019 Apr; 27(7):9794-9802. PubMed ID: 31045128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating photorefractive effect in thin-film lithium niobate microring resonators.
    Xu Y; Shen M; Lu J; Surya JB; Sayem AA; Tang HX
    Opt Express; 2021 Feb; 29(4):5497-5504. PubMed ID: 33726085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of AlGaN High Frequency Bulk Acoustic Resonator by Reactive RF Magnetron Co-sputtering System.
    Chang YC; Chen YC; Cheng CC
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices.
    Lu R; Manzaneque T; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):934-944. PubMed ID: 29856710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and analysis of electro-optic tunable microring resonators in silicon thin film on lithium niobate.
    Han H; Xiang B
    Sci Rep; 2019 Apr; 9(1):6302. PubMed ID: 31004107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave bulk-acoustic-wave reflection-grating resonators.
    Oates DE; Pan JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):315-22. PubMed ID: 18290157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and measurement of boundary waves at the interface between LiNbO3 and silicon.
    Gachon D; Daniau W; Courjon E; Laude V; Ballandras S; Majjad H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1655-63. PubMed ID: 20639159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ε-Ga
    Chen Z; Lu X; Tu Y; Chen W; Zhang Z; Cheng S; Chen S; Luo H; He Z; Pei Y; Wang G
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203927. PubMed ID: 36156466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar coupling to high-Q lithium niobate disk resonators.
    Nunzi Conti G; Berneschi S; Cosi F; Pelli S; Soria S; Righini GC; Dispenza M; Secchi A
    Opt Express; 2011 Feb; 19(4):3651-6. PubMed ID: 21369190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-Type Lithium Niobate Thin Films Fabricated by Nitrogen-Doping.
    Li W; Cui J; Wang W; Zheng D; Jia L; Saeed S; Liu H; Rupp R; Kong Y; Xu J
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic loss mechanisms in leaky SAW resonators on lithium tantalate.
    Koskela J; Knuuttila JV; Makkonen T; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1517-26. PubMed ID: 11800113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.