These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38509350)

  • 1. The role of eye movement signals in non-invasive brain-computer interface typing system.
    Liu X; Hu B; Si Y; Wang Q
    Med Biol Eng Comput; 2024 Jul; 62(7):1981-1990. PubMed ID: 38509350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer.
    He S; Zhou Y; Yu T; Zhang R; Huang Q; Chuai L; Mustafa MU; Gu Z; Yu ZL; Tan H; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):519-530. PubMed ID: 31870987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-Based Eye Movement Recognition Using Brain-Computer Interface and Random Forests.
    Antoniou E; Bozios P; Christou V; Tzimourta KD; Kalafatakis K; G Tsipouras M; Giannakeas N; Tzallas AT
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wearable Asynchronous Brain-Computer Interface Based on EEG-EOG Signals With Fewer Channels.
    Hu L; Zhu J; Chen S; Zhou Y; Song Z; Li Y
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):504-513. PubMed ID: 37616137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C; Boudir A; Hurter C; Peysakhovich V
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usability and Workload of Access Technology for People With Severe Motor Impairment: A Comparison of Brain-Computer Interfacing and Eye Tracking.
    Pasqualotto E; Matuz T; Federici S; Ruf CA; Bartl M; Olivetti Belardinelli M; Birbaumer N; Halder S
    Neurorehabil Neural Repair; 2015; 29(10):950-7. PubMed ID: 25753951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid BCI web browser based on EEG and EOG signals.
    Shenghong He ; Tianyou Yu ; Zhenghui Gu ; Yuanqing Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1006-1009. PubMed ID: 29060044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of loss of control on movement BCIs.
    Reuderink B; Poel M; Nijholt A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):628-37. PubMed ID: 21984517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive EEG-based BCI spellers from the beginning to today: a mini-review.
    Maslova O; Komarova Y; Shusharina N; Kolsanov A; Zakharov A; Garina E; Pyatin V
    Front Hum Neurosci; 2023; 17():1216648. PubMed ID: 37680264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.
    Mannan MM; Kim S; Jeong MY; Kamran MA
    Sensors (Basel); 2016 Feb; 16(2):241. PubMed ID: 26907276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.