These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 38509635)
41. 3D ARCNN: An Asymmetric Residual CNN for False Positive Reduction in Pulmonary Nodule. Liu B; Song H; Li Q; Lin Y; Weng X; Su Z; Yang J IEEE Trans Nanobioscience; 2024 Jan; 23(1):18-25. PubMed ID: 37216265 [TBL] [Abstract][Full Text] [Related]
42. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Cascio D; Magro R; Fauci F; Iacomi M; Raso G Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972 [TBL] [Abstract][Full Text] [Related]
43. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. Dou Q; Chen H; Yu L; Qin J; Heng PA IEEE Trans Biomed Eng; 2017 Jul; 64(7):1558-1567. PubMed ID: 28113302 [TBL] [Abstract][Full Text] [Related]
44. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
45. Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss. Tran GS; Nghiem TP; Nguyen VT; Luong CM; Burie JC J Healthc Eng; 2019; 2019():5156416. PubMed ID: 30863524 [TBL] [Abstract][Full Text] [Related]
46. Modeling of the lung nodules for detection in LDCT scans. Farag A; Elhabian S; Graham J; Farag A; Elshazly S; Falk R; Mahdi H; Abdelmunim H; Al-Ghaafary S Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3618-21. PubMed ID: 21096845 [TBL] [Abstract][Full Text] [Related]
47. Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images. Zhang R; Wei Y; Wang D; Chen B; Sun H; Lei Y; Zhou Q; Luo Z; Jiang L; Qiu R; Shi F; Li W Eur Radiol; 2024 Jul; 34(7):4218-4229. PubMed ID: 38114849 [TBL] [Abstract][Full Text] [Related]
48. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design. Farag AA; El-Baz A; Gimelfarb G; El-Ghar MA; Eldiasty T Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):720-8. PubMed ID: 16685910 [TBL] [Abstract][Full Text] [Related]
49. Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification. Zheng S; Cornelissen LJ; Cui X; Jing X; Veldhuis RNJ; Oudkerk M; van Ooijen PMA Med Phys; 2021 Feb; 48(2):733-744. PubMed ID: 33300162 [TBL] [Abstract][Full Text] [Related]
50. 3D multi-view squeeze-and-excitation convolutional neural network for lung nodule classification. Yang Y; Li X; Fu J; Han Z; Gao B Med Phys; 2023 Mar; 50(3):1905-1916. PubMed ID: 36639958 [TBL] [Abstract][Full Text] [Related]
51. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Gu Y; Chi J; Liu J; Yang L; Zhang B; Yu D; Zhao Y; Lu X Comput Biol Med; 2021 Oct; 137():104806. PubMed ID: 34461501 [TBL] [Abstract][Full Text] [Related]
52. Shape-based computer-aided detection of lung nodules in thoracic CT images. Ye X; Lin X; Dehmeshki J; Slabaugh G; Beddoe G IEEE Trans Biomed Eng; 2009 Jul; 56(7):1810-20. PubMed ID: 19527950 [TBL] [Abstract][Full Text] [Related]
53. A simplified cluster model and a tool adapted for collaborative labeling of lung cancer CT scans. Morozov SP; Gombolevskiy VA; Elizarov AB; Gusev MA; Novik VP; Prokudaylo SB; Bardin AS; Popov EV; Ledikhova NV; Chernina VY; Blokhin IA; Nikolaev AE; Reshetnikov RV; Vladzymyrskyy AV; Kulberg NS Comput Methods Programs Biomed; 2021 Jul; 206():106111. PubMed ID: 33957377 [TBL] [Abstract][Full Text] [Related]
54. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis. Nagatani Y; Takahashi M; Murata K; Ikeda M; Yamashiro T; Miyara T; Koyama H; Koyama M; Sato Y; Moriya H; Noma S; Tomiyama N; Ohno Y; Murayama S; Eur J Radiol; 2015 Jul; 84(7):1401-12. PubMed ID: 25892051 [TBL] [Abstract][Full Text] [Related]
55. Computer-aided detection of solid lung nodules in lossy compressed multidetector computed tomography chest exams. Raffy P; Gaudeau Y; Miller DP; Moureaux JM; Castellino RA Acad Radiol; 2006 Oct; 13(10):1194-203. PubMed ID: 16979068 [TBL] [Abstract][Full Text] [Related]
56. Hierarchical approach for pulmonary-nodule identification from CT images using YOLO model and a 3D neural network classifier. Ahmadyar Y; Kamali-Asl A; Arabi H; Samimi R; Zaidi H Radiol Phys Technol; 2024 Mar; 17(1):124-134. PubMed ID: 37980315 [TBL] [Abstract][Full Text] [Related]
57. Deep learning-based pulmonary nodule detection: Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage. Zheng S; Cui X; Vonder M; Veldhuis RNJ; Ye Z; Vliegenthart R; Oudkerk M; van Ooijen PMA Comput Methods Programs Biomed; 2020 Nov; 196():105620. PubMed ID: 32615493 [TBL] [Abstract][Full Text] [Related]
58. 3D multi-scale deep convolutional neural networks for pulmonary nodule detection. Peng H; Sun H; Guo Y PLoS One; 2021; 16(1):e0244406. PubMed ID: 33411741 [TBL] [Abstract][Full Text] [Related]
59. MRUNet-3D: A multi-stride residual 3D UNet for lung nodule segmentation. Bbosa R; Gui H; Luo F; Liu F; Efio-Akolly K; Chen YP Methods; 2024 Jun; 226():89-101. PubMed ID: 38642628 [TBL] [Abstract][Full Text] [Related]
60. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography. Kozuka T; Matsukubo Y; Kadoba T; Oda T; Suzuki A; Hyodo T; Im S; Kaida H; Yagyu Y; Tsurusaki M; Matsuki M; Ishii K Jpn J Radiol; 2020 Nov; 38(11):1052-1061. PubMed ID: 32592003 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]