These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38509728)

  • 21. Isolation of Phytochrome B Photobodies.
    Kwon Y; Kim C; Choi G
    Methods Mol Biol; 2024; 2795():113-122. PubMed ID: 38594533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunocytochemical fluorescent in situ visualization of proteins in Arabidopsis.
    Boutté Y; Grebe M
    Methods Mol Biol; 2014; 1062():453-72. PubMed ID: 24057381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in Two-Photon Imaging in Plants.
    Mizuta Y
    Plant Cell Physiol; 2021 Nov; 62(8):1224-1230. PubMed ID: 34019083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A.
    Weidler G; Zur Oven-Krockhaus S; Heunemann M; Orth C; Schleifenbaum F; Harter K; Hoecker U; Batschauer A
    Plant Cell; 2012 Jun; 24(6):2610-23. PubMed ID: 22739826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis.
    Fang Y; Hearn S; Spector DL
    Mol Biol Cell; 2004 Jun; 15(6):2664-73. PubMed ID: 15034145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraoperative near-infrared autofluorescence imaging of parathyroid glands.
    Ladurner R; Sommerey S; Arabi NA; Hallfeldt KKJ; Stepp H; Gallwas JKS
    Surg Endosc; 2017 Aug; 31(8):3140-3145. PubMed ID: 27844237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-Infrared Fluorescent Proteins and Their Applications.
    Karasev MM; Stepanenko OV; Rumyantsev KA; Turoverov KK; Verkhusha VV
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S32-S50. PubMed ID: 31213194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis.
    Yamaguchi R; Nakamura M; Mochizuki N; Kay SA; Nagatani A
    J Cell Biol; 1999 May; 145(3):437-45. PubMed ID: 10225946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the requirements for localization of phytochrome B to nuclear bodies.
    Chen M; Schwab R; Chory J
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14493-8. PubMed ID: 14612575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants.
    Legris M; Ince YÇ; Fankhauser C
    Nat Commun; 2019 Nov; 10(1):5219. PubMed ID: 31745087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome A signal transduction.
    Lin R; Teng Y; Park HJ; Ding L; Black C; Fang P; Wang H
    Plant Physiol; 2008 Oct; 148(2):981-92. PubMed ID: 18715961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1.
    Zhou X; Groves NR; Meier I
    Nucleus; 2015; 6(2):144-53. PubMed ID: 25759303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses.
    Torres-Galea P; Huang LF; Chua NH; Bolle C
    Mol Genet Genomics; 2006 Jul; 276(1):13-30. PubMed ID: 16680434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis FHY1 protein stability is regulated by light via phytochrome A and 26S proteasome.
    Shen Y; Feng S; Ma L; Lin R; Qu LJ; Chen Z; Wang H; Deng XW
    Plant Physiol; 2005 Nov; 139(3):1234-43. PubMed ID: 16244150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor.
    Genoud T; Schweizer F; Tscheuschler A; Debrieux D; Casal JJ; Schäfer E; Hiltbrunner A; Fankhauser C
    PLoS Genet; 2008 Aug; 4(8):e1000143. PubMed ID: 18670649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local phytochrome signalling limits root growth in light by repressing auxin biosynthesis.
    Spaninks K; Offringa R
    J Exp Bot; 2023 Aug; 74(15):4642-4653. PubMed ID: 37140032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis.
    Kim L; Kircher S; Toth R; Adam E; Schäfer E; Nagy F
    Plant J; 2000 Apr; 22(2):125-33. PubMed ID: 10792828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping.
    Oda Y; Fukuda H
    Plant J; 2011 May; 66(4):629-41. PubMed ID: 21294795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana.
    Fernández AP; Gil P; Valkai I; Nagy F; Schäfer E
    Plant Cell Physiol; 2005 May; 46(5):790-6. PubMed ID: 15753105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.