These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38509739)
1. NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network. Cao J; Chen Q; Qiu J; Wang Y; Lan W; Du X; Tan K J Cell Mol Med; 2024 Apr; 28(7):e18224. PubMed ID: 38509739 [TBL] [Abstract][Full Text] [Related]
2. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Qu X; Du G; Hu J; Cai Y Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360 [TBL] [Abstract][Full Text] [Related]
3. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction. Liu L; Zhang Q; Wei Y; Zhao Q; Liao B Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321 [TBL] [Abstract][Full Text] [Related]
4. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622 [TBL] [Abstract][Full Text] [Related]
5. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
6. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks. Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415 [TBL] [Abstract][Full Text] [Related]
7. GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-based Graph Autoencoder. Wang M; Lei X; Liu L; Chen J; Wu FX IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39259623 [TBL] [Abstract][Full Text] [Related]
8. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network. Peng J; Li J; Shang X BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374 [TBL] [Abstract][Full Text] [Related]
9. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding. Yue Y; He S BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477 [TBL] [Abstract][Full Text] [Related]
10. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction. Li M; Cai X; Xu S; Ji H Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592060 [TBL] [Abstract][Full Text] [Related]
11. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction. Yuan Y; Zhang Y; Meng X; Liu Z; Wang B; Miao R; Zhang R; Su W; Liu L J Mol Graph Model; 2023 Jul; 122():108498. PubMed ID: 37126908 [TBL] [Abstract][Full Text] [Related]
12. Drug-target interaction predication via multi-channel graph neural networks. Li Y; Qiao G; Wang K; Wang G Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237 [TBL] [Abstract][Full Text] [Related]
13. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network. Su Y; Hu Z; Wang F; Bin Y; Zheng C; Li H; Chen H; Zeng X Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38145949 [TBL] [Abstract][Full Text] [Related]
14. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. Li J; Wang J; Lv H; Zhang Z; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592 [TBL] [Abstract][Full Text] [Related]
15. MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction. Zhang B; Niu D; Zhang L; Zhang Q; Li Z BMC Bioinformatics; 2024 Aug; 25(1):275. PubMed ID: 39179993 [TBL] [Abstract][Full Text] [Related]
16. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network. Yang R; Fu Y; Zhang Q; Zhang L Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169 [TBL] [Abstract][Full Text] [Related]
17. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction. Jin Y; Lu J; Shi R; Yang Y Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427 [TBL] [Abstract][Full Text] [Related]
18. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network. Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483 [TBL] [Abstract][Full Text] [Related]
19. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network. Xu X; Xuan P; Zhang T; Chen B; Sheng N IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2294-2304. PubMed ID: 33729947 [TBL] [Abstract][Full Text] [Related]
20. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction. Gao M; Zhang D; Chen Y; Zhang Y; Wang Z; Wang X; Li S; Guo Y; Webb GI; Nguyen ATN; May L; Song J Comput Biol Med; 2024 May; 173():108339. PubMed ID: 38547658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]