These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38509851)

  • 1. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering.
    Bai Y; Wang Z; He X; Zhu Y; Xu X; Yang H; Mei G; Chen S; Ma B; Zhu R
    Small Methods; 2024 Mar; ():e2301283. PubMed ID: 38509851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine.
    Amiryaghoubi N; Fathi M; Pesyan NN; Samiei M; Barar J; Omidi Y
    Med Res Rev; 2020 Sep; 40(5):1833-1870. PubMed ID: 32301138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation.
    Tavares MT; Gaspar VM; Monteiro MV; S Farinha JP; Baleizão C; Mano JF
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33455952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.
    Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y
    Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Orthopedic Biomaterials and Implants.
    Intravaia JT; Graham T; Kim HS; Nanda HS; Kumbar SG; Nukavarapu SP
    Curr Opin Biomed Eng; 2023 Mar; 25():. PubMed ID: 36642994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.
    Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive manufacturing of bioactive glass biomaterials.
    Simorgh S; Alasvand N; Khodadadi M; Ghobadi F; Malekzadeh Kebria M; Brouki Milan P; Kargozar S; Baino F; Mobasheri A; Mozafari M
    Methods; 2022 Dec; 208():75-91. PubMed ID: 36334889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-loaded biomaterials for osteogenesis.
    Wang J; Cui Y; Liu H; Li S; Sun S; Xu H; Peng C; Wang Y; Wu D
    Front Bioeng Biotechnol; 2022; 10():952670. PubMed ID: 36199361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds.
    Zhang M; Zhai X; Ma T; Huang Y; Jin M; Yang H; Fu H; Zhang S; Sun T; Jin X; Du Y; Yan CH
    ACS Nano; 2023 Mar; 17(5):4433-4444. PubMed ID: 36802532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platelet rich fibrin as a bioactive matrix with proosteogenic and proangiogenic properties on human healthy primary cells in vitro.
    Dohle E; Schmeinck L; Parkhoo K; Sader R; Ghanaati S
    Platelets; 2024 Dec; 35(1):2316744. PubMed ID: 38390838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.