These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Total meniscus replacement with a 3D printing of network hydrogel composite scaffold in a rabbit model. Li J; Zhang F; Ga X; Gao G; Guo T Knee Surg Sports Traumatol Arthrosc; 2024 May; 32(5):1187-1198. PubMed ID: 38506124 [TBL] [Abstract][Full Text] [Related]
44. Suspension bath bioprinting and maturation of anisotropic meniscal constructs. Prendergast ME; Heo SJ; Mauck RL; Burdick JA Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36913724 [TBL] [Abstract][Full Text] [Related]
45. Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage. Chen Q; Zhang X; Chen K; Feng C; Wang D; Qi J; Li X; Zhao X; Chai Z; Zhang D ACS Appl Mater Interfaces; 2022 Nov; 14(46):52347-52358. PubMed ID: 36349936 [TBL] [Abstract][Full Text] [Related]
46. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering. Tseng H; Puperi DS; Kim EJ; Ayoub S; Shah JV; Cuchiara ML; West JL; Grande-Allen KJ Tissue Eng Part A; 2014 Oct; 20(19-20):2634-45. PubMed ID: 24712446 [TBL] [Abstract][Full Text] [Related]
47. Liquid crystalline composite hydrogels with large pH-triggered anisotropic swelling for embolotherapy. Zhang Y; Luo Y; Gao S; Zou L; Guan Y; Zhang Y Acta Biomater; 2024 Jan; 174():206-216. PubMed ID: 38101558 [TBL] [Abstract][Full Text] [Related]
48. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383 [TBL] [Abstract][Full Text] [Related]
49. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
50. Meniscus heterogeneity and 3D-printed strategies for engineering anisotropic meniscus. Du MZ; Dou Y; Ai LY; Su T; Zhang Z; Chen YR; Jiang D Int J Bioprint; 2023; 9(3):693. PubMed ID: 37273997 [TBL] [Abstract][Full Text] [Related]
51. Hierarchical hydrogel scaffolds with a clustered and oriented structure. Cheng J; Xue J; Yang Y; Yu D; Liu Z; Li Z J Mater Chem B; 2023 May; 11(21):4703-4714. PubMed ID: 37170855 [TBL] [Abstract][Full Text] [Related]
52. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
53. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Moradi L; Vasei M; Dehghan MM; Majidi M; Farzad Mohajeri S; Bonakdar S Biomaterials; 2017 May; 126():18-30. PubMed ID: 28242519 [TBL] [Abstract][Full Text] [Related]
54. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Bandyopadhyay A; Ghibhela B; Mandal BB Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38277686 [TBL] [Abstract][Full Text] [Related]
55. Highly Stretchable, Tough, Resilient, and Antifatigue Hydrogels Based on Multiple Hydrogen Bonding Interactions Formed by Phenylalanine Derivatives. Yu J; Xu K; Chen X; Zhao X; Yang Y; Chu D; Xu Y; Zhang Q; Zhang Y; Cheng Y Biomacromolecules; 2021 Mar; 22(3):1297-1304. PubMed ID: 33577294 [TBL] [Abstract][Full Text] [Related]
56. Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons. Park N; Kim J ACS Appl Mater Interfaces; 2022 Jan; 14(3):4479-4489. PubMed ID: 34969247 [TBL] [Abstract][Full Text] [Related]
57. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770 [TBL] [Abstract][Full Text] [Related]
58. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Kamdem Tamo A; Doench I; Walter L; Montembault A; Sudre G; David L; Morales-Helguera A; Selig M; Rolauffs B; Bernstein A; Hoenders D; Walther A; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34065272 [TBL] [Abstract][Full Text] [Related]
59. Natural-Wood-Inspired Ultrastrong Anisotropic Hybrid Hydrogels Targeting Artificial Tendons or Ligaments. Wu L; Kang Y; Shi X; Yuezhen B; Qu M; Li J; Wu ZS ACS Nano; 2023 Jul; 17(14):13522-13532. PubMed ID: 37439503 [TBL] [Abstract][Full Text] [Related]