These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38509852)

  • 61. Nanoporous, Ultrastiff, and Transparent Plastic-like Polymer Hydrogels Enabled by Hydrogen Bonding-Induced Self-Assembly.
    Cheng R; Zhang X; Li J; Zheng H; Zhang Q
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42783-42793. PubMed ID: 39087622
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fabrication of dense anisotropic collagen scaffolds using biaxial compression.
    Zitnay JL; Reese SP; Tran G; Farhang N; Bowles RD; Weiss JA
    Acta Biomater; 2018 Jan; 65():76-87. PubMed ID: 29128533
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model.
    Kang SW; Son SM; Lee JS; Lee ES; Lee KY; Park SG; Park JH; Kim BS
    J Biomed Mater Res A; 2006 Sep; 78(3):659-71. PubMed ID: 16739168
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Correction to "A High-Density Hydrogen Bond Locking Strategy for Constructing Anisotropic High-Strength Hydrogel-Based Meniscus Substitute".
    Adv Sci (Weinh); 2024 Oct; ():e2412203. PubMed ID: 39436668
    [No Abstract]   [Full Text] [Related]  

  • 65. Digital light processing printed hydrogel scaffolds with adjustable modulus.
    Xu F; Jin H; Wu H; Jiang A; Qiu B; Liu L; Gao Q; Lin B; Kong W; Chen S; Sun D
    Sci Rep; 2024 Jul; 14(1):15695. PubMed ID: 38977824
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biomimetic Conductive Hydrogel Scaffolds with Anisotropy and Electrical Stimulation for In Vivo Skeletal Muscle Reconstruction.
    Xue Y; Li J; Jiang T; Han Q; Jing Y; Bai S; Yan X
    Adv Healthc Mater; 2024 Feb; 13(4):e2302180. PubMed ID: 37985965
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Feasibility of a self-assembling peptide hydrogel scaffold for meniscal defect: An in vivo study in a rabbit model.
    Okuno N; Otsuki S; Aoyama J; Nakagawa K; Murakami T; Ikeda K; Hirose Y; Wakama H; Okayoshi T; Okamoto Y; Hirano Y; Neo M
    J Orthop Res; 2021 Jan; 39(1):165-176. PubMed ID: 32852842
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications.
    Holloway JL; Lowman AM; VanLandingham MR; Palmese GR
    Acta Biomater; 2014 Aug; 10(8):3581-9. PubMed ID: 24814880
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Role of scaffold mean pore size in meniscus regeneration.
    Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK
    Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Soft, strong, tough, and durable protein-based fiber hydrogels.
    Wang M; Sun S; Dong G; Long F; Butcher JT
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2213030120. PubMed ID: 36791112
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tissue engineering with meniscus cells derived from surgical debris.
    Baker BM; Nathan AS; Huffman GR; Mauck RL
    Osteoarthritis Cartilage; 2009 Mar; 17(3):336-45. PubMed ID: 18848784
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Jerky-Inspired Fabrication of Anisotropic Hydrogels with Widely Tunable Mechanical Properties.
    He J; Khalesi H; Zhang Y; Zhao Y; Fang Y
    Langmuir; 2022 Sep; 38(36):10986-10993. PubMed ID: 36045549
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus.
    Bahcecioglu G; Hasirci N; Bilgen B; Hasirci V
    Biofabrication; 2019 Jan; 11(2):025002. PubMed ID: 30530944
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Architected fibrous scaffolds for engineering anisotropic tissues.
    Reid JA; Dwyer KD; Schmitt PR; Soepriatna AH; Coulombe KL; Callanan A
    Biofabrication; 2021 Jul; 13(4):. PubMed ID: 34186522
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering.
    Mohsenifard S; Mashayekhan S; Safari H
    J Biomater Appl; 2023 Feb; 37(7):1243-1258. PubMed ID: 36217954
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability.
    Gao F; Zhang Y; Li Y; Xu B; Cao Z; Liu W
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8956-66. PubMed ID: 27014865
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tendon-Inspired Anisotropic Hydrogels with Excellent Mechanical Properties for Strain Sensors.
    Lin H; Wang R; Xu S; Li X; Song S
    Langmuir; 2023 May; 39(17):6069-6077. PubMed ID: 37079920
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites.
    Yan G; He S; Chen G; Tang X; Sun Y; Xu F; Zeng X; Lin L
    Carbohydr Polym; 2022 Jan; 276():118783. PubMed ID: 34823795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.