These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38510055)
21. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. Schmitz A; Ye M; Shapiro R; Yang R; Noehren B J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287 [TBL] [Abstract][Full Text] [Related]
22. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101 [TBL] [Abstract][Full Text] [Related]
23. Enabling Gait Analysis in the Telemedicine Practice through Portable and Accurate 3D Human Pose Estimation. Martini E; Boldo M; Aldegheri S; Valè N; Filippetti M; Smania N; Bertucco M; Picelli A; Bombieri N Comput Methods Programs Biomed; 2022 Oct; 225():107016. PubMed ID: 35907374 [TBL] [Abstract][Full Text] [Related]
24. Feasibility of 3D Body Tracking from Monocular 2D Video Feeds in Musculoskeletal Telerehabilitation. Clemente C; Chambel G; Silva DCF; Montes AM; Pinto JF; Silva HPD Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203068 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras. Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042 [TBL] [Abstract][Full Text] [Related]
26. Joint angle estimation during shoulder abduction exercise using contactless technology. Barzegar Khanghah A; Fernie G; Roshan Fekr A Biomed Eng Online; 2024 Jan; 23(1):11. PubMed ID: 38281988 [TBL] [Abstract][Full Text] [Related]
27. Accuracy of a 3D temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system. Ruescas Nicolau AV; De Rosario H; Basso Della-Vedova F; Parrilla Bernabé E; Juan MC; López-Pascual J Gait Posture; 2022 Sep; 97():28-34. PubMed ID: 35868094 [TBL] [Abstract][Full Text] [Related]
28. In vivo static and dynamic lengthening measurements of the posterior cruciate ligament at high knee flexion angles. Charbonnier C; Duthon VB; Chagué S; Kolo FC; Ménétrey J Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):555-564. PubMed ID: 31863253 [TBL] [Abstract][Full Text] [Related]
29. Dynamic valgus knee revealed with single leg jump tests in soccer players. Uhlár Á; Ambrus M; Lacza Z J Sports Med Phys Fitness; 2023 Mar; 63(3):461-470. PubMed ID: 36861880 [TBL] [Abstract][Full Text] [Related]
30. Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing. Lahkar BK; Muller A; Dumas R; Reveret L; Robert T Front Sports Act Living; 2022; 4():939980. PubMed ID: 35958668 [TBL] [Abstract][Full Text] [Related]
31. Towards Single Camera Human 3D-Kinematics. Bittner M; Yang WT; Zhang X; Seth A; van Gemert J; van der Helm FCT Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616937 [TBL] [Abstract][Full Text] [Related]
32. Greater Breast Support Alters Trunk and Knee Joint Biomechanics Commonly Associated With Anterior Cruciate Ligament Injury. Fong HB; Nelson AK; Storey JE; Hinton J; Puppa M; McGhee D; Greenwood D; Powell DW Front Sports Act Living; 2022; 4():861553. PubMed ID: 35669558 [TBL] [Abstract][Full Text] [Related]
33. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR bioRxiv; 2023 Feb; ():. PubMed ID: 36865211 [TBL] [Abstract][Full Text] [Related]
35. Gait analysis comparison between manual marking, 2D pose estimation algorithms, and 3D marker-based system. Menychtas D; Petrou N; Kansizoglou I; Giannakou E; Grekidis A; Gasteratos A; Gourgoulis V; Douda E; Smilios I; Michalopoulou M; Sirakoulis GC; Aggelousis N Front Rehabil Sci; 2023; 4():1238134. PubMed ID: 37744429 [TBL] [Abstract][Full Text] [Related]
36. IMU-based knee flexion, abduction and internal rotation estimation during drop landing and cutting tasks. Fan B; Xia H; Xu J; Li Q; Shull PB J Biomech; 2021 Jul; 124():110549. PubMed ID: 34167019 [TBL] [Abstract][Full Text] [Related]
37. THE USE OF MICROSOFT KINECT ™ FOR ASSESSING READINESS OF RETURN TO SPORT AND INJURY RISK EXERCISES: A VALIDATION STUDY. Tipton CC; Telfer S; Cherones A; Gee AO; Kweon CY Int J Sports Phys Ther; 2019 Sep; 14(5):724-730. PubMed ID: 31598410 [TBL] [Abstract][Full Text] [Related]
38. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787 [TBL] [Abstract][Full Text] [Related]
39. Evaluating the Performance of Balance Physiotherapy Exercises Using a Sensory Platform: The Basis for a Persuasive Balance Rehabilitation Virtual Coaching System. Tsakanikas VD; Gatsios D; Dimopoulos D; Pardalis A; Pavlou M; Liston MB; Fotiadis DI Front Digit Health; 2020; 2():545885. PubMed ID: 34713032 [TBL] [Abstract][Full Text] [Related]
40. Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test. Krause DA; Boyd MS; Hager AN; Smoyer EC; Thompson AT; Hollman JH Int J Sports Phys Ther; 2015 Feb; 10(1):37-44. PubMed ID: 25709861 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]