These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38510572)

  • 21. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.
    Huang Q; Yang D; Jiang L; Zhang H; Liu H; Kotani K
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28608824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements.
    Abbaspour S; Naber A; Ortiz-Catalan M; GholamHosseini H; Lindén M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.
    Betthauser JL; Hunt CL; Osborn LE; Masters MR; Levay G; Kaliki RR; Thakor NV
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):770-778. PubMed ID: 28650804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EMG-Based Real-Time Linear-Nonlinear Cascade Regression Decoding of Shoulder, Elbow, and Wrist Movements in Able-Bodied Persons and Stroke Survivors.
    Liu J; Ren Y; Xu D; Kang SH; Zhang LQ
    IEEE Trans Biomed Eng; 2020 May; 67(5):1272-1281. PubMed ID: 31425016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.
    Matsubara T; Morimoto J
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2205-13. PubMed ID: 23475334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-Time Wrist Motion Decoding with High Framerate Electrical Impedance Tomography (EIT).
    Liu X; Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving transient state myoelectric signal recognition in hand movement classification using gyroscopes.
    Boschmann A; Nofen B; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6035-8. PubMed ID: 24111115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses.
    Kanitz G; Cipriani C; Edin BB
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control.
    Earley EJ; Hargrove LJ; Kuiken TA
    Front Neurosci; 2016; 10():58. PubMed ID: 26941599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability.
    Powell MA; Kaliki RR; Thakor NV
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):522-32. PubMed ID: 24122566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analyzing the Trade-Off Between Training Session Time and Performance in Myoelectric Hand Gesture Recognition During Upper Limb Movement.
    Cognolato M; Brigato L; Cid YD; Atzori M; Muller H
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():772-777. PubMed ID: 31374724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development of a myoelectric training tool for above-elbow amputees.
    Dawson MR; Fahimi F; Carey JP
    Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control.
    Williams H; Shehata AW; Dawson M; Scheme E; Hebert J; Pilarski P
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2243-2255. PubMed ID: 34986093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding Motor Unit Activity From Forearm Muscles: Perspectives for Myoelectric Control.
    Kapelner T; Negro F; Aszmann OC; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):244-251. PubMed ID: 29324410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delaying feedback during pre-device training facilitates the retention of novel myoelectric skills: a laboratory and home-based study.
    Stuttaford SA; Dupan SSG; Nazarpour K; Dyson M
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 36928264
    [No Abstract]   [Full Text] [Related]  

  • 39. Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition.
    Earley EJ; Berneving A; Zbinden J; Ortiz-Catalan M
    Front Hum Neurosci; 2022; 16():1030207. PubMed ID: 36337856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition.
    Spieker V; Ganguly A; Haddadin S; Piazza C
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.