BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38510619)

  • 1. Mathematical modelling of cerebral haemodynamics and their effects on ICP.
    Chu KH; Olakorede I; Beqiri E; Czosnyka M; Smielewski P
    Brain Spine; 2024; 4():102772. PubMed ID: 38510619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema.
    Doron O; Zadka Y; Barnea O; Rosenthal G
    Fluids Barriers CNS; 2021 Sep; 18(1):42. PubMed ID: 34530863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of reduced cerebral blood flow in cerebral edema and elevated intracranial pressure.
    Zadka Y; Doron O; Rosenthal G; Barnea O
    J Appl Physiol (1985); 2023 Feb; 134(2):444-454. PubMed ID: 36603049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP.
    Zadka Y; Rosenthal G; Doron O; Barnea O
    J Appl Physiol (1985); 2024 Jan; 136(1):224-232. PubMed ID: 38059286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there a direct link between cerebrovascular activity and cerebrospinal fluid pressure-volume compensation?
    Haubrich C; Czosnyka Z; Lavinio A; Smielewski P; Diehl RR; Pickard JD; Czosnyka M
    Stroke; 2007 Oct; 38(10):2677-80. PubMed ID: 17702960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human intracranial pulsatility during the cardiac cycle: a computational modelling framework.
    Causemann M; Vinje V; Rognes ME
    Fluids Barriers CNS; 2022 Nov; 19(1):84. PubMed ID: 36320038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form.
    Domogo AA; Reinstrup P; Ottesen JT
    J Theor Biol; 2023 May; 564():111451. PubMed ID: 36907263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomathematics of intracranial CSF and haemodynamics. Simulation and analysis with the aid of a mathematical model.
    Hoffmann O
    Acta Neurochir Suppl (Wien); 1987; 40():117-30. PubMed ID: 3481197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuous correlation between intracranial pressure and cerebral blood flow velocity reflects cerebral autoregulation impairment during intracranial pressure plateau waves.
    Lewis PM; Smielewski P; Rosenfeld JV; Pickard JD; Czosnyka M
    Neurocrit Care; 2014 Dec; 21(3):514-25. PubMed ID: 24865272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral vasodilatation causing acute intracranial hypertension: a method for noninvasive assessment.
    Schmidt B; Czosnyka M; Schwarze JJ; Sander D; Gerstner W; Lumenta CB; Pickard JD; Klingelhöfer J
    J Cereb Blood Flow Metab; 1999 Sep; 19(9):990-6. PubMed ID: 10478650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical applications of a non-invasive ICP monitoring method.
    Schmidt B; Czosnyka M; Klingelhöfer J
    Eur J Ultrasound; 2002 Nov; 16(1-2):37-45. PubMed ID: 12470849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral Vascular Changes During Acute Intracranial Pressure Drop.
    Liu X; Zimmermann LL; Ho N; Vespa P; Liao X; Hu X
    Neurocrit Care; 2019 Jun; 30(3):635-644. PubMed ID: 30523541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves.
    Lang EW; Kasprowicz M; Smielewski P; Pickard J; Czosnyka M
    Neurocrit Care; 2015 Aug; 23(1):85-91. PubMed ID: 25501688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
    Czosnyka Z; Kim DJ; Balédent O; Schmidt EA; Smielewski P; Czosnyka M
    Acta Neurochir Suppl; 2018; 126():233-236. PubMed ID: 29492567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration.
    Czosnyka M; Richards HK; Reinhard M; Steiner LA; Budohoski K; Smielewski P; Pickard JD; Kasprowicz M
    Neurol Res; 2012 Jan; 34(1):17-24. PubMed ID: 22196857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel method for dynamic control of intracranial pressure.
    Luciano MG; Dombrowski SM; Qvarlander S; El-Khoury S; Yang J; Thyagaraj S; Loth F
    J Neurosurg; 2017 May; 126(5):1629-1640. PubMed ID: 27419825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical closing pressure during intracranial pressure plateau waves.
    Varsos GV; de Riva N; Smielewski P; Pickard JD; Brady KM; Reinhard M; Avolio A; Czosnyka M
    Neurocrit Care; 2013 Jun; 18(3):341-8. PubMed ID: 23512327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.