These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38510827)

  • 1. Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence.
    Wu Y; Wen W; Gu S; Huang G; Wang C; Lu X; Xiao P; Guo X; Huang L
    Plant Phenomics; 2024; 6():0160. PubMed ID: 38510827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season.
    Zhu B; Liu F; Xie Z; Guo Y; Li B; Ma Y
    Ann Bot; 2020 Sep; 126(4):701-712. PubMed ID: 32179920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing Changes in Maize Leaves Orientation due to GxExM Using an Automatic Method from RGB Images.
    Serouart M; Lopez-Lozano R; Daubige G; Baumont M; Escale B; De Solan B; Baret F
    Plant Phenomics; 2023; 5():0046. PubMed ID: 37228515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation Method for Phenotypic Traits Based on the 3D Reconstruction of Maize Canopies.
    Ma X; Zhu K; Guan H; Feng J; Yu S; Liu G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.
    Sarlikioti V; de Visser PH; Marcelis LF
    Ann Bot; 2011 Apr; 107(5):875-83. PubMed ID: 21355008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic regulation of self-organizing azimuthal canopy orientations and their impacts on light interception in maize.
    Zhou Y; Kusmec A; Schnable PS
    Plant Cell; 2024 May; 36(5):1600-1621. PubMed ID: 38252634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Design of Plant Canopy Based on Light Interception: A Case Study With Loquat.
    Tang L; Yin D; Chen C; Yu D; Han W
    Front Plant Sci; 2019; 10():364. PubMed ID: 30972094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in shoot architecture traits and their relationship to canopy coverage and light interception in soybean (Glycine max).
    Sreekanta S; Haaning A; Dobbels A; O'Neill R; Hofstad A; Virdi K; Katagiri F; Stupar RM; Muehlbauer GJ; Lorenz AJ
    BMC Plant Biol; 2024 Mar; 24(1):194. PubMed ID: 38493116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Maize Canopy Morphology in Response to Increased Plant Density.
    He L; Sun W; Chen X; Han L; Li J; Ma Y; Song Y
    Front Plant Sci; 2020; 11():533514. PubMed ID: 33519830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Importance of Using Realistic 3D Canopy Models to Calculate Light Interception in the Field.
    Xiao S; Fei S; Li Q; Zhang B; Chen H; Xu D; Cai Z; Bi K; Guo Y; Li B; Chen Z; Ma Y
    Plant Phenomics; 2023; 5():0082. PubMed ID: 37602194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of 3D modeling to refine predictions of canopy light utilization: A comparative study on canopy photosynthesis models with different dimensions.
    Gu S; Wen W; Xu T; Lu X; Yu Z; Guo X; Zhao C
    Front Plant Sci; 2022; 13():735981. PubMed ID: 36061758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating photosynthetically active radiation distribution in maize canopies by a three-dimensional incident radiation model.
    Wang X; Guo Y; Wang X; Ma Y; Li B
    Funct Plant Biol; 2008 Dec; 35(10):867-875. PubMed ID: 32688838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Contributions of Different Factors to Canopy Photosynthesis in 2 Maize Varieties: Development of a Novel 3D Canopy Modeling Pipeline.
    Song Q; Liu F; Bu H; Zhu XG
    Plant Phenomics; 2023; 5():0075. PubMed ID: 37502446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Will future maize improvement programs leverage the canopy light-interception, photosynthetic, and biomass capacities of traditional accessions?
    Mubarak ANM; Mufeeth Mohammathu MM; Kumara ADNT
    PeerJ; 2023; 11():e15233. PubMed ID: 37131994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.
    Müller-Linow M; Pinto-Espinosa F; Scharr H; Rascher U
    Plant Methods; 2015; 11():11. PubMed ID: 25774205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model.
    Chen TW; Nguyen TM; Kahlen K; Stützel H
    J Exp Bot; 2014 Dec; 65(22):6399-410. PubMed ID: 25183746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of vertical distribution of SPAD values within maize canopy based on unmanned aerial vehicles multispectral imagery.
    Chen B; Huang G; Lu X; Gu S; Wen W; Wang G; Chang W; Guo X; Zhao C
    Front Plant Sci; 2023; 14():1253536. PubMed ID: 38192698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies.
    Niinemets Ü
    Photosynth Res; 2023 Nov; 158(2):131-149. PubMed ID: 37615905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.
    Friedli M; Kirchgessner N; Grieder C; Liebisch F; Mannale M; Walter A
    Plant Methods; 2016; 12():9. PubMed ID: 26834822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling.
    Evers JB; Bastiaans L
    J Plant Res; 2016 May; 129(3):339-51. PubMed ID: 27000875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.