BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38511380)

  • 1. [Screening, enzyme activity and genomic analysis of
    Chen ZJ; Wang HJ; Tian X; Zhang G
    Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3404-3412. PubMed ID: 38511380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Isolation and identification of a cellulose degrading fungus Y5 and its capability of degradating wheat straw].
    Yin ZW; Fan BQ; Ren P
    Huan Jing Ke Xue; 2011 Jan; 32(1):247-52. PubMed ID: 21404694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites.
    Liu G; Zhang K; Gong H; Yang K; Wang X; Zhou G; Cui W; Chen Y; Yang Y
    Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):130. PubMed ID: 37598218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Isolation, identification and enzyme characterization of a thermophilic cellulolytic anaerobic bacterium].
    Zhao Y; Ma S; Sun Y; Huang Y; Deng Y
    Wei Sheng Wu Xue Bao; 2012 Sep; 52(9):1160-6. PubMed ID: 23236851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening and isolation of cold-adapted cellulose degrading bacterium: A candidate for straw degradation and
    He Z; Ding B; Ali Q; Liu H; Zhao Y; Wang X; Han Y; Dong H; Divvela PK; Juan Y
    Front Microbiol; 2022; 13():1098723. PubMed ID: 36713214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification, characteristics and rice growth promotion of a highly efficient cellulolytic bacterial strain,
    Wu L; Che S; Qin X; Xu Y; Tian S; Zhu Y; Song J; Guan Y; Wang D; Wu M; Yang X; Wu Z; Yang M
    Front Microbiol; 2023; 14():1152966. PubMed ID: 37032857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199.
    López-Mondéjar R; Zühlke D; Větrovský T; Becher D; Riedel K; Baldrian P
    Biotechnol Biofuels; 2016; 9():104. PubMed ID: 27186238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Screening and genomic analysis of a lignocellulose degrading bacterium].
    Bao W; Jiang J; Zhou Y; Wu Y; Leung FC
    Wei Sheng Wu Xue Bao; 2016 May; 56(5):765-77. PubMed ID: 29727138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a thermophilic facultatively anaerobic bacterium Paenibacillus sp. strain DA-C8 that exhibits xylan degradation under anaerobic conditions.
    Chhe C; Uke A; Baramee S; Tachaapaikoon C; Pason P; Waeonukul R; Ratanakhanokchai K; Kosugi A
    J Biotechnol; 2021 Dec; 342():64-71. PubMed ID: 34688788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose degradation potential of Paenibacillus lautus strain BHU3 and its whole genome sequence.
    Yadav S; Dubey SK
    Bioresour Technol; 2018 Aug; 262():124-131. PubMed ID: 29702421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.
    An T; Dong Z; Lv J; Liu Y; Wang M; Wei S; Song Y; Zhang Y; Deng S
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):299-305. PubMed ID: 25762797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates.
    Adlakha N; Sawant S; Anil A; Lali A; Yazdani SS
    Appl Environ Microbiol; 2012 Oct; 78(20):7447-54. PubMed ID: 22904050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Cellulolytic Nitrogen Fixing Bacterium,
    Latt ZK; Yu SS; Kyaw EP; Lynn TM; Nwe MT; Mon WW; Aye KN
    Open Microbiol J; 2018; 12():154-162. PubMed ID: 29997700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus
    Mukherjee S; Lodha TD; Madhuprakash J
    Microbiol Spectr; 2023 Jun; 11(3):e0502822. PubMed ID: 37071006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Straw from Different Crop Species Recruits Different Communities of Lignocellulose-Degrading Microorganisms in Black Soil.
    Chang C; Guo Y; Tang K; Hu Y; Xu W; Chen W; McLaughlin N; Wang Z
    Microorganisms; 2024 May; 12(5):. PubMed ID: 38792768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1.
    Ma J; Zhang K; Liao H; Hector SB; Shi X; Li J; Liu B; Xu T; Tong C; Liu X; Zhu Y
    Biotechnol Biofuels; 2016; 9():25. PubMed ID: 26839588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil.
    Zhang T; Wei S; Liu Y; Cheng C; Ma J; Yue L; Gao Y; Cheng Y; Ren Y; Su S; Zhao X; Lu Z
    Front Microbiol; 2023; 14():1167293. PubMed ID: 37637133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan.
    Lowe SE; Theodorou MK; Trinci AP
    Appl Environ Microbiol; 1987 Jun; 53(6):1216-23. PubMed ID: 3606104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis.
    Houfani AA; Větrovský T; Baldrian P; Benallaoua S
    World J Microbiol Biotechnol; 2017 Feb; 33(2):29. PubMed ID: 28058637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.