BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38511588)

  • 1. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review.
    Zhang X; Yu J; Zhao C; Si Y
    Small; 2024 Mar; ():e2311464. PubMed ID: 38511588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced graphene oxide/SiC nanowire composite aerogel prepared by a hydrothermal method with excellent thermal insulation performance and electromagnetic wave absorption performance.
    Wang Z; Li R; Liu H; Liu X; Zheng F; Yu C
    Nanotechnology; 2024 Jan; 35(13):. PubMed ID: 38134441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed Mullite-Reinforced SiC-Based Aerogel Composites.
    Miao M; Yin J; Mao Z; Chen Y; Lu J
    Small; 2024 May; ():e2401742. PubMed ID: 38721985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Insulation Performance of SiC-Doped Silica Aerogels under Large Temperature and Air Pressure Differences.
    Zhang SN; Pang HQ; Fan TH; Ye Q; Cai QL; Wu X
    Gels; 2022 May; 8(5):. PubMed ID: 35621618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Radiation Shielding and Mechanical Strengthening of Mullite Fiber/SiC Nanowire Aerogels Using In Situ Synthesized SiC Nanowires.
    Xu H; Li X; Tong Z; Zhang B; Ji H
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing an Air Suction Effect Induction Strategy to Create Super Thermally Insulating and Superelastic SiC Aerogels.
    Yan M; Zhang H; Fu Y; Pan Y; Lun Z; Zhang Z; He P; Cheng X
    Small; 2022 May; 18(19):e2201039. PubMed ID: 35419970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation.
    Liu F; He C; Jiang Y; Feng J; Li L; Tang G; Feng J
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Reticulated, Spongelike, Resilient Aerogels Assembled by SiC/Si
    Zhang X; Zhang Y; Qu YN; Wu JM; Zhang S; Yang J
    Nano Lett; 2021 May; 21(10):4167-4175. PubMed ID: 34000191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastrong, Superelastic, and Lamellar Multiarch Structured ZrO
    Zhang X; Wang F; Dou L; Cheng X; Si Y; Yu J; Ding B
    ACS Nano; 2020 Nov; 14(11):15616-15625. PubMed ID: 33118799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of the SiC/HfC Composite Aerogel with Ultra-Low Thermal Conductivity and Excellent Compressive Strength.
    Wang W; You Q; Wu Z; Cui S; Shen W
    Gels; 2024 Apr; 10(5):. PubMed ID: 38786208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Covalent Heterointerface Enables Superelastic Amorphous SiC Meta-Aerogels.
    Zhang X; Yu J; Zhao C; Si Y
    ACS Nano; 2023 Nov; 17(21):21813-21821. PubMed ID: 37909358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Customizable Resilient Multifunctional Graphene Aerogels via Blend-spinning assisted Freeze Casting.
    Zhao Y; Qi H; Dong X; Yang Y; Zhai W
    ACS Nano; 2023 Aug; 17(16):15615-15628. PubMed ID: 37540788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement.
    Pan Y; Zheng J; Xu Y; Chen X; Yan M; Li J; Zhao X; Feng Y; Ma Y; Ding M; Wang R; He J
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):829-839. PubMed ID: 35963170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic and hierarchical SiC@SiO
    Su L; Wang H; Niu M; Dai S; Cai Z; Yang B; Huyan H; Pan X
    Sci Adv; 2020 Jun; 6(26):eaay6689. PubMed ID: 32637589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerogels for Thermal Protection and Their Application in Aerospace.
    Jin R; Zhou Z; Liu J; Shi B; Zhou N; Wang X; Jia X; Guo D; Xu B
    Gels; 2023 Jul; 9(8):. PubMed ID: 37623061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties.
    Jiang S; Zhang M; Jiang W; Xu Q; Yu J; Liu L; Liu L
    Carbohydr Polym; 2020 Nov; 247():116701. PubMed ID: 32829829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment.
    Yang Y; Dang B; Wang C; Chen Y; Chen K; Chen X; Li Y; Sun Q
    Carbohydr Polym; 2024 Jan; 323():121392. PubMed ID: 37940285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysiloxane Bonded Silica Aerogel with Enhanced Thermal Insulation and Strength.
    Wang W; Tong Z; Li R; Su D; Ji H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nacre-Mimetic Nanocomposite Aerogels with Exceptional Mechanical Performance for Thermal Superinsulation at Extreme Conditions.
    Zhang J; Zheng J; Gao M; Xu C; Cheng Y; Zhu M
    Adv Mater; 2023 Jul; 35(29):e2300813. PubMed ID: 37080594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.