These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38511862)
1. Catchment-Wide Groundwater Budget for the Inkomati-Usuthu Water Management Area in South Africa. Shakhane T; Mojabake M Ground Water; 2024; 62(3):480-493. PubMed ID: 38511862 [TBL] [Abstract][Full Text] [Related]
2. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
3. Predicting aquifer response time for application in catchment modeling. Walker GR; Gilfedder M; Dawes WR; Rassam DW Ground Water; 2015; 53(3):475-84. PubMed ID: 24842053 [TBL] [Abstract][Full Text] [Related]
4. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. Cardoso de Salis HH; Monteiro da Costa A; Moreira Vianna JH; Azeneth Schuler M; Künne A; Sanches Fernandes LF; Leal Pacheco FA Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31315302 [TBL] [Abstract][Full Text] [Related]
6. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools. Iqbal N; Hossain F; Lee H; Akhter G Environ Monit Assess; 2017 Mar; 189(3):128. PubMed ID: 28243930 [TBL] [Abstract][Full Text] [Related]
7. Integrated monitoring and modeling to disentangle the complex spatio-temporal dynamics of urbanized streams under drought stress. López Moreira Mazacotte GA; Tetzlaff D; Marx C; Warter MM; Wu S; Smith AA; Soulsby C Environ Monit Assess; 2024 May; 196(6):560. PubMed ID: 38767712 [TBL] [Abstract][Full Text] [Related]
8. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment. Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046 [TBL] [Abstract][Full Text] [Related]
9. Dryland salinity in Western Australia: managing a changing water cycle. Taylor RJ; Hoxley G Water Sci Technol; 2003; 47(7-8):201-7. PubMed ID: 12793681 [TBL] [Abstract][Full Text] [Related]
10. The aquifer recharge: an overview of the legislative and planning aspect. De Giglio O; Caggiano G; Apollonio F; Marzella A; Brigida S; Ranieri E; Lucentini L; Uricchio VF; Montagna MT Ann Ig; 2018; 30(1):34-43. PubMed ID: 29215129 [TBL] [Abstract][Full Text] [Related]
11. Groundwater recharge estimation using WetSpass-M and MTBS leveraging from HydroOffice and WHAT tools for baseflow in Weyib watershed, Ethiopia. Aredo MR; Lohani TK; Mohammed AK Environ Monit Assess; 2024 May; 196(6):532. PubMed ID: 38727964 [TBL] [Abstract][Full Text] [Related]
12. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland. Caulfield J; Chelliah M; Comte JC; Cassidy R; Flynn R Sci Total Environ; 2014 Dec; 500-501():224-34. PubMed ID: 25217997 [TBL] [Abstract][Full Text] [Related]
13. A 3-D groundwater isoscape of the contiguous USA for forensic and water resource science. Bowen GJ; Guo JS; Allen ST PLoS One; 2022; 17(1):e0261651. PubMed ID: 34995313 [TBL] [Abstract][Full Text] [Related]
14. Hydrology of the North Klondike River: carbon export, water balance and inter-annual climate influences within a sub-alpine permafrost catchment. Lapp A; Clark I; Macumber A; Patterson T Isotopes Environ Health Stud; 2017 Oct; 53(5):500-517. PubMed ID: 28745515 [TBL] [Abstract][Full Text] [Related]
15. Surface water and groundwater interaction in the Vredefort Dome, South Africa: a stable isotope and multivariate statistical approach. Welgus MN; Abiye TA Environ Monit Assess; 2022 Aug; 194(10):672. PubMed ID: 35972589 [TBL] [Abstract][Full Text] [Related]
16. A provider-based water planning and management model--WaterSim 4.0--for the Phoenix Metropolitan Area. Sampson DA; Escobar V; Tschudi MK; Lant T; Gober P J Environ Manage; 2011 Oct; 92(10):2596-610. PubMed ID: 21719188 [TBL] [Abstract][Full Text] [Related]
17. Assessing current and future available resources to supply urban water demands using a high-resolution SWAT model coupled with recurrent neural networks and validated through the SIMPA model in karstic Mediterranean environments. Jodar-Abellan A; Pardo MÁ; Asadollah SBHS; Bailey RT Environ Sci Pollut Res Int; 2024 Aug; 31(36):49116-49140. PubMed ID: 39046638 [TBL] [Abstract][Full Text] [Related]
19. Isotopes to assess sustainability of overexploited groundwater in the Souss-Massa system (Morocco). Hssaisoune M; Bouchaou L; N'da B; Malki M; Abahous H; Fryar AE Isotopes Environ Health Stud; 2017 Jun; 53(3):298-312. PubMed ID: 27919163 [TBL] [Abstract][Full Text] [Related]
20. Uncertainty and urban water recharge for managing groundwater availability using decision support. Passarello MC; Pierce SA; Sharp JM Water Sci Technol; 2014; 70(11):1888-96. PubMed ID: 25500478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]