These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38511928)

  • 1. Proteins à la carte: riboproteogenomic exploration of bacterial N-terminal proteoform expression.
    Fijalkowski I; Snauwaert V; Van Damme P
    mBio; 2024 Apr; 15(4):e0033324. PubMed ID: 38511928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Translation Start Sites in Bacterial Genomes.
    Meydan S; Klepacki D; Mankin AS; Vázquez-Laslop N
    Methods Mol Biol; 2021; 2252():27-55. PubMed ID: 33765270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retapamulin-Assisted Ribosome Profiling Reveals the Alternative Bacterial Proteome.
    Meydan S; Marks J; Klepacki D; Sharma V; Baranov PV; Firth AE; Margus T; Kefi A; Vázquez-Laslop N; Mankin AS
    Mol Cell; 2019 May; 74(3):481-493.e6. PubMed ID: 30904393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men.
    Van Damme P; Gawron D; Van Criekinge W; Menschaert G
    Mol Cell Proteomics; 2014 May; 13(5):1245-61. PubMed ID: 24623590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial riboproteogenomics: the era of N-terminal proteoform existence revealed.
    Fijalkowska D; Fijalkowski I; Willems P; Van Damme P
    FEMS Microbiol Rev; 2020 Jul; 44(4):418-431. PubMed ID: 32386204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional proteomics reveals differences in N-terminal proteoform stability.
    Gawron D; Ndah E; Gevaert K; Van Damme P
    Mol Syst Biol; 2016 Feb; 12(2):858. PubMed ID: 26893308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteome under translational control.
    Gawron D; Gevaert K; Van Damme P
    Proteomics; 2014 Dec; 14(23-24):2647-62. PubMed ID: 25263132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation initiation at AUG and non-AUG triplets in plants.
    Fang JC; Liu MJ
    Plant Sci; 2023 Oct; 335():111822. PubMed ID: 37574140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To New Beginnings: Riboproteogenomics Discovery of N-Terminal Proteoforms in
    Willems P; Ndah E; Jonckheere V; Van Breusegem F; Van Damme P
    Front Plant Sci; 2021; 12():778804. PubMed ID: 35069635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TISdb: a database for alternative translation initiation in mammalian cells.
    Wan J; Qian SB
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D845-50. PubMed ID: 24203712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms.
    Michel AM; Ahern AM; Donohue CA; Baranov PV
    Proteomics; 2015 Jul; 15(14):2410-6. PubMed ID: 25736862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria.
    Gelhausen R; Müller T; Svensson SL; Alkhnbashi OS; Sharma CM; Eggenhofer F; Backofen R
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome?
    Prensner JR; Abelin JG; Kok LW; Clauser KR; Mudge JM; Ruiz-Orera J; Bassani-Sternberg M; Moritz RL; Deutsch EW; van Heesch S
    Mol Cell Proteomics; 2023 Sep; 22(9):100631. PubMed ID: 37572790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms.
    Verbruggen S; Ndah E; Van Criekinge W; Gessulat S; Kuster B; Wilhelm M; Van Damme P; Menschaert G
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S126-S140. PubMed ID: 31040227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino termini of many yeast proteins map to downstream start codons.
    Fournier CT; Cherny JJ; Truncali K; Robbins-Pianka A; Lin MS; Krizanc D; Weir MP
    J Proteome Res; 2012 Dec; 11(12):5712-9. PubMed ID: 23140384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration.
    Crappé J; Ndah E; Koch A; Steyaert S; Gawron D; De Keulenaer S; De Meester E; De Meyer T; Van Criekinge W; Van Damme P; Menschaert G
    Nucleic Acids Res; 2015 Mar; 43(5):e29. PubMed ID: 25510491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions.
    Lee PJ; Soares AR; Sun Y; Fai C; Picciotto MR; Guo JU
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global mapping of translation initiation sites by TIS profiling in budding yeast.
    Hollerer I; Powers EN; Brar GA
    STAR Protoc; 2021 Mar; 2(1):100250. PubMed ID: 33458709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-AUG start codons: Expanding and regulating the small and alternative ORFeome.
    Cao X; Slavoff SA
    Exp Cell Res; 2020 Jun; 391(1):111973. PubMed ID: 32209305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.