These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38511931)
1. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries. Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931 [TBL] [Abstract][Full Text] [Related]
2. Facile Synthesis of Diazaanthraquinone Dimers as High-Capacity Organic Cathode Materials for Rechargeable Lithium Batteries. Zhang P; Gan X; Huang L; Wang J; Li M; Hu Z; Wang R; Yu T; Song Z ACS Appl Mater Interfaces; 2024 Mar; 16(12):14929-14939. PubMed ID: 38483071 [TBL] [Abstract][Full Text] [Related]
3. Constructing Extended π-Conjugated Molecules with Chen Z; Wang J; Cai T; Hu Z; Chu J; Wang F; Gan X; Song Z ACS Appl Mater Interfaces; 2022 Jun; 14(24):27994-28003. PubMed ID: 35695375 [TBL] [Abstract][Full Text] [Related]
4. Fused Functional Organic Material with the Alternating Conjugation of Quinone-Pyrazine as Cathode for Aqueous Zinc Ion Batteries. Wang Y; Niu S; Gong S; Ju N; Jiang T; Wang Y; Zhang X; Sun Q; Sun HB Small Methods; 2024 Jul; 8(7):e2301301. PubMed ID: 38185796 [TBL] [Abstract][Full Text] [Related]
5. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
6. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Lin Z; Shi HY; Lin L; Yang X; Wu W; Sun X Nat Commun; 2021 Jul; 12(1):4424. PubMed ID: 34285215 [TBL] [Abstract][Full Text] [Related]
7. High-Voltage Rechargeable Alkali-Acid Zn-PbO Xu Y; Cai P; Chen K; Ding Y; Chen L; Chen W; Wen Z Angew Chem Int Ed Engl; 2020 Dec; 59(52):23593-23597. PubMed ID: 32931131 [TBL] [Abstract][Full Text] [Related]
8. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
9. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
10. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes? Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645 [TBL] [Abstract][Full Text] [Related]
11. Aging-Responsive Phase Transition of VOOH to V Nagraj R; Puttaswamy R; Yadav P; Beere HK; Upadhyay SN; Sanna Kotrappanavar N; Pakhira S; Ghosh D ACS Appl Mater Interfaces; 2022 Dec; 14(51):56886-56899. PubMed ID: 36516045 [TBL] [Abstract][Full Text] [Related]
12. Reviving Cost-Effective Organic Cathodes in Halide-Based All-Solid-State Lithium Batteries. Gao Y; Fu J; Hu Y; Zhao F; Li W; Deng S; Sun Y; Hao X; Ma J; Lin X; Wang C; Li R; Sun X Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202403331. PubMed ID: 38728142 [TBL] [Abstract][Full Text] [Related]
13. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. Shi J; Mao K; Zhang Q; Liu Z; Long F; Wen L; Hou Y; Li X; Ma Y; Yue Y; Li L; Zhi C; Gao Y Nanomicro Lett; 2023 Feb; 15(1):53. PubMed ID: 36795246 [TBL] [Abstract][Full Text] [Related]
14. "Water-in-Salt" Electrolyte Suppressed MnVOPO Zhu S; Zhang W; Liao X; Zhang L; An Q; Wang X Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336197 [TBL] [Abstract][Full Text] [Related]
15. Long Cycle Life for Rechargeable Lithium Battery using Organic Small Molecule Dihydrodibenzo[c,h][2,6]naphthyridine-5,11-dione as a Cathode after Isoindigo Pigment Isomerization. Yang M; Hu W; Li J; Chen T; Zhao S; Chen X; Wang S; Jin H Adv Sci (Weinh); 2024 Jan; 11(4):e2307134. PubMed ID: 38032135 [TBL] [Abstract][Full Text] [Related]
16. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
17. Revisiting the Structure and Electrochemical Performance of Poly( Zhang X; Li G; Wang J; Chu J; Wang F; Hu Z; Song Z ACS Appl Mater Interfaces; 2022 Jun; 14(24):27968-27978. PubMed ID: 35675710 [TBL] [Abstract][Full Text] [Related]
18. Fluorinated Carbons as Rechargeable Li-Ion Battery Cathodes in the Voltage Window of 0.5-4.8 V. Chen P; Jiang C; Jiang J; Zou J; Ran Q; Wang X; Niu X; Wang L ACS Appl Mater Interfaces; 2021 Jul; 13(26):30576-30582. PubMed ID: 34165960 [TBL] [Abstract][Full Text] [Related]
19. Engineering Low-Cost Organic Cathode for Aqueous Rechargeable Battery and Demonstrating the Proton Intercalation Mechanism for Pyrazine Energy Storage Unit. Niu S; Wang Y; Zhang J; Wang Y; Tian Y; Ju N; Wang H; Zhao S; Zhang X; Zhang W; Li C; Sun HB Small; 2024 May; 20(21):e2309022. PubMed ID: 38084449 [TBL] [Abstract][Full Text] [Related]
20. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]