These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
504 related articles for article (PubMed ID: 38512326)
1. Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study. Molenaar A; Lukose D; Brennan L; Jenkins EL; McCaffrey TA J Med Internet Res; 2024 Mar; 26():e47826. PubMed ID: 38512326 [TBL] [Abstract][Full Text] [Related]
2. Using Natural Language Processing to Explore "Dry January" Posts on Twitter: Longitudinal Infodemiology Study. Russell AM; Valdez D; Chiang SC; Montemayor BN; Barry AE; Lin HC; Massey PM J Med Internet Res; 2022 Nov; 24(11):e40160. PubMed ID: 36343184 [TBL] [Abstract][Full Text] [Related]
3. Digital Epidemiology of Prescription Drug References on X (Formerly Twitter): Neural Network Topic Modeling and Sentiment Analysis. Rao VK; Valdez D; Muralidharan R; Agley J; Eddens KS; Dendukuri A; Panth V; Parker MA J Med Internet Res; 2024 Aug; 26():e57885. PubMed ID: 39178036 [TBL] [Abstract][Full Text] [Related]
4. COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis. Lyu JC; Han EL; Luli GK J Med Internet Res; 2021 Jun; 23(6):e24435. PubMed ID: 34115608 [TBL] [Abstract][Full Text] [Related]
5. Uncovering the Reasons Behind COVID-19 Vaccine Hesitancy in Serbia: Sentiment-Based Topic Modeling. Ljajić A; Prodanović N; Medvecki D; Bašaragin B; Mitrović J J Med Internet Res; 2022 Nov; 24(11):e42261. PubMed ID: 36301673 [TBL] [Abstract][Full Text] [Related]
6. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
7. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. Abd-Alrazaq A; Alhuwail D; Househ M; Hamdi M; Shah Z J Med Internet Res; 2020 Apr; 22(4):e19016. PubMed ID: 32287039 [TBL] [Abstract][Full Text] [Related]
8. Social Media Insights Into US Mental Health During the COVID-19 Pandemic: Longitudinal Analysis of Twitter Data. Valdez D; Ten Thij M; Bathina K; Rutter LA; Bollen J J Med Internet Res; 2020 Dec; 22(12):e21418. PubMed ID: 33284783 [TBL] [Abstract][Full Text] [Related]
9. Public Response to Federal Electronic Cigarette Regulations Analyzed Using Social Media Data Through Natural Language Processing: Topic Modeling Study. Lin SY; Tulabandu SK; Koch JR; Hayes R; Barnes A; Purohit H; Chen S; Han B; Xue H J Med Internet Res; 2024 Oct; 26():e58919. PubMed ID: 39352739 [TBL] [Abstract][Full Text] [Related]
10. Geographic Differences in Cannabis Conversations on Twitter: Infodemiology Study. van Draanen J; Tao H; Gupta S; Liu S JMIR Public Health Surveill; 2020 Oct; 6(4):e18540. PubMed ID: 33016888 [TBL] [Abstract][Full Text] [Related]
11. Monitoring User Opinions and Side Effects on COVID-19 Vaccines in the Twittersphere: Infodemiology Study of Tweets. Portelli B; Scaboro S; Tonino R; Chersoni E; Santus E; Serra G J Med Internet Res; 2022 May; 24(5):e35115. PubMed ID: 35446781 [TBL] [Abstract][Full Text] [Related]
12. A Comprehensive Analysis of COVID-19 Vaccine Discourse by Vaccine Brand on Twitter in Korea: Topic and Sentiment Analysis. Park S; Suh YK J Med Internet Res; 2023 Jan; 25():e42623. PubMed ID: 36603153 [TBL] [Abstract][Full Text] [Related]
13. Twitter discussions on breastfeeding during the COVID-19 pandemic. Jagarapu J; Diaz MI; Lehmann CU; Medford RJ Int Breastfeed J; 2023 Nov; 18(1):56. PubMed ID: 37925408 [TBL] [Abstract][Full Text] [Related]
14. Emergency Physician Twitter Use in the COVID-19 Pandemic as a Potential Predictor of Impending Surge: Retrospective Observational Study. Margus C; Brown N; Hertelendy AJ; Safferman MR; Hart A; Ciottone GR J Med Internet Res; 2021 Jul; 23(7):e28615. PubMed ID: 34081612 [TBL] [Abstract][Full Text] [Related]
15. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis. Alhuzali H; Zhang T; Ananiadou S J Med Internet Res; 2022 Oct; 24(10):e40323. PubMed ID: 36150046 [TBL] [Abstract][Full Text] [Related]
16. Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis. Monselise M; Chang CH; Ferreira G; Yang R; Yang CC J Med Internet Res; 2021 Oct; 23(10):e30765. PubMed ID: 34581682 [TBL] [Abstract][Full Text] [Related]
17. Unveiling public perceptions at the beginning of lockdown: an application of structural topic modeling and sentiment analysis in the UK and India. Kang X; Stamolampros P BMC Public Health; 2024 Oct; 24(1):2832. PubMed ID: 39407148 [TBL] [Abstract][Full Text] [Related]
18. Factors Driving the Popularity and Virality of COVID-19 Vaccine Discourse on Twitter: Text Mining and Data Visualization Study. Zhang J; Wang Y; Shi M; Wang X JMIR Public Health Surveill; 2021 Dec; 7(12):e32814. PubMed ID: 34665761 [TBL] [Abstract][Full Text] [Related]
19. Tracking COVID-19 Discourse on Twitter in North America: Infodemiology Study Using Topic Modeling and Aspect-Based Sentiment Analysis. Jang H; Rempel E; Roth D; Carenini G; Janjua NZ J Med Internet Res; 2021 Feb; 23(2):e25431. PubMed ID: 33497352 [TBL] [Abstract][Full Text] [Related]
20. COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment-Based Topic Modeling. Huangfu L; Mo Y; Zhang P; Zeng DD; He S J Med Internet Res; 2022 Feb; 24(2):e31726. PubMed ID: 34783665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]