These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 38512406)
1. Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms. Zheng G; Peng J; Shu Z; Jin H; Han L; Yuan Z; Qin X; Hou J; He X; Gong X J Cancer Res Clin Oncol; 2024 Mar; 150(3):147. PubMed ID: 38512406 [TBL] [Abstract][Full Text] [Related]
2. Prediction of neoadjuvant chemotherapy pathological complete response for breast cancer based on radiomics nomogram of intratumoral and derived tissue. Zheng G; Hou J; Shu Z; Peng J; Han L; Yuan Z; He X; Gong X BMC Med Imaging; 2024 Jan; 24(1):22. PubMed ID: 38245712 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Chen S; Shu Z; Li Y; Chen B; Tang L; Mo W; Shao G; Shao F Front Oncol; 2020; 10():1410. PubMed ID: 32923392 [No Abstract] [Full Text] [Related]
4. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Braman NM; Etesami M; Prasanna P; Dubchuk C; Gilmore H; Tiwari P; Plecha D; Madabhushi A Breast Cancer Res; 2017 May; 19(1):57. PubMed ID: 28521821 [TBL] [Abstract][Full Text] [Related]
5. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
6. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [TBL] [Abstract][Full Text] [Related]
8. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography. Mao N; Shi Y; Lian C; Wang Z; Zhang K; Xie H; Zhang H; Chen Q; Cheng G; Xu C; Dai Y Eur Radiol; 2022 May; 32(5):3207-3219. PubMed ID: 35066632 [TBL] [Abstract][Full Text] [Related]
9. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
10. An MRI-based machine learning radiomics can predict short-term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: A multicenter study. Xin Z; Yan W; Feng Y; Yunzhi L; Zhang Y; Wang D; Chen W; Peng J; Guo C; Chen Z; Wang X; Zhu J; Lei J Cancer Med; 2023 Oct; 12(19):19383-19393. PubMed ID: 37772478 [TBL] [Abstract][Full Text] [Related]
11. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048 [TBL] [Abstract][Full Text] [Related]
12. Predictive value of background parenchymal enhancement on breast magnetic resonance imaging for pathological tumor response to neoadjuvant chemotherapy in breast cancers: a systematic review. Li X; Yan F Cancer Imaging; 2024 Mar; 24(1):35. PubMed ID: 38462607 [TBL] [Abstract][Full Text] [Related]
13. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models. Lin Y; Wang J; Li M; Zhou C; Hu Y; Wang M; Zhang X Breast; 2024 Aug; 76():103737. PubMed ID: 38696854 [TBL] [Abstract][Full Text] [Related]
14. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI. Yoshida K; Kawashima H; Kannon T; Tajima A; Ohno N; Terada K; Takamatsu A; Adachi H; Ohno M; Miyati T; Ishikawa S; Ikeda H; Gabata T Magn Reson Imaging; 2022 Oct; 92():19-25. PubMed ID: 35636571 [TBL] [Abstract][Full Text] [Related]
15. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning. Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Wang X; Hua H; Han J; Zhong X; Liu J; Chen J Clin Breast Cancer; 2023 Aug; 23(6):e331-e344. PubMed ID: 37321954 [TBL] [Abstract][Full Text] [Related]
17. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693 [TBL] [Abstract][Full Text] [Related]
18. An XGBoost Machine Learning Based Model for Predicting Ki-67 Value ≥ 15% in T Lu Y; Yang F; Tao Y; An P Technol Cancer Res Treat; 2024; 23():15330338241265989. PubMed ID: 39051517 [No Abstract] [Full Text] [Related]
19. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Liang X; Yu X; Gao T Eur J Radiol; 2022 May; 150():110247. PubMed ID: 35290910 [TBL] [Abstract][Full Text] [Related]
20. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Sutton EJ; Onishi N; Fehr DA; Dashevsky BZ; Sadinski M; Pinker K; Martinez DF; Brogi E; Braunstein L; Razavi P; El-Tamer M; Sacchini V; Deasy JO; Morris EA; Veeraraghavan H Breast Cancer Res; 2020 May; 22(1):57. PubMed ID: 32466777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]