These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 38512616)
21. A multiple-time-scale comparative study for the added value of magnetic resonance imaging-based radiomics in predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Peng W; Wan L; Wang S; Zou S; Zhao X; Zhang H Front Oncol; 2023; 13():1234619. PubMed ID: 37664046 [TBL] [Abstract][Full Text] [Related]
22. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Boldrini L; Cusumano D; Chiloiro G; Casà C; Masciocchi C; Lenkowicz J; Cellini F; Dinapoli N; Azario L; Teodoli S; Gambacorta MA; De Spirito M; Valentini V Radiol Med; 2019 Feb; 124(2):145-153. PubMed ID: 30374650 [TBL] [Abstract][Full Text] [Related]
23. Applicability of a pathological complete response magnetic resonance-based radiomics model for locally advanced rectal cancer in intercontinental cohort. Boldrini L; Lenkowicz J; Orlandini LC; Yin G; Cusumano D; Chiloiro G; Dinapoli N; Peng Q; Casà C; Gambacorta MA; Valentini V; Lang J Radiat Oncol; 2022 Apr; 17(1):78. PubMed ID: 35428267 [TBL] [Abstract][Full Text] [Related]
24. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
25. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
26. THeragnostic utilities for neoplastic DisEases of the rectum by MRI guided radiotherapy (THUNDER 2) phase II trial: interim safety analysis. Chiloiro G; Romano A; Cusumano D; Boldrini L; Panza G; Placidi L; Meldolesi E; Nardini M; Meffe G; Nicolini G; Votta C; Indovina L; Gambacorta MA Radiat Oncol; 2023 Oct; 18(1):163. PubMed ID: 37803322 [TBL] [Abstract][Full Text] [Related]
27. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Shahzadi I; Zwanenburg A; Lattermann A; Linge A; Baldus C; Peeken JC; Combs SE; Diefenhardt M; Rödel C; Kirste S; Grosu AL; Baumann M; Krause M; Troost EGC; Löck S Sci Rep; 2022 Jun; 12(1):10192. PubMed ID: 35715462 [TBL] [Abstract][Full Text] [Related]
28. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. Wan L; Sun Z; Peng W; Wang S; Li J; Zhao Q; Wang S; Ouyang H; Zhao X; Zou S; Zhang H J Magn Reson Imaging; 2022 Oct; 56(4):1130-1142. PubMed ID: 35142001 [TBL] [Abstract][Full Text] [Related]
29. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
30. Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer. Chen H; Li X; Pan X; Qiang Y; Qi XS Phys Med Biol; 2023 Dec; 68(23):. PubMed ID: 37972413 [TBL] [Abstract][Full Text] [Related]
31. Delta Radiomics Analysis for Local Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided Radiotherapy. Cusumano D; Boldrini L; Yadav P; Casà C; Lee SL; Romano A; Piras A; Chiloiro G; Placidi L; Catucci F; Votta C; Mattiucci GC; Indovina L; Gambacorta MA; Bassetti M; Valentini V Diagnostics (Basel); 2021 Jan; 11(1):. PubMed ID: 33466307 [TBL] [Abstract][Full Text] [Related]
32. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
33. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI. Nie K; Shi L; Chen Q; Hu X; Jabbour SK; Yue N; Niu T; Sun X Clin Cancer Res; 2016 Nov; 22(21):5256-5264. PubMed ID: 27185368 [TBL] [Abstract][Full Text] [Related]
34. Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Tang B; Lenkowicz J; Peng Q; Boldrini L; Hou Q; Dinapoli N; Valentini V; Diao P; Yin G; Orlandini LC BMC Med Imaging; 2022 Mar; 22(1):44. PubMed ID: 35287607 [TBL] [Abstract][Full Text] [Related]
35. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Cusumano D; Meijer G; Lenkowicz J; Chiloiro G; Boldrini L; Masciocchi C; Dinapoli N; Gatta R; Casà C; Damiani A; Barbaro B; Gambacorta MA; Azario L; De Spirito M; Intven M; Valentini V Radiol Med; 2021 Mar; 126(3):421-429. PubMed ID: 32833198 [TBL] [Abstract][Full Text] [Related]
36. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Liu Z; Zhang XY; Shi YJ; Wang L; Zhu HT; Tang Z; Wang S; Li XT; Tian J; Sun YS Clin Cancer Res; 2017 Dec; 23(23):7253-7262. PubMed ID: 28939744 [No Abstract] [Full Text] [Related]
37. Development and validation of an MRI-based radiomic nomogram to distinguish between good and poor responders in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiotherapy. Wang J; Liu X; Hu B; Gao Y; Chen J; Li J Abdom Radiol (NY); 2021 May; 46(5):1805-1815. PubMed ID: 33151359 [TBL] [Abstract][Full Text] [Related]
38. Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning. Abbaspour S; Abdollahi H; Arabalibeik H; Barahman M; Arefpour AM; Fadavi P; Ay M; Mahdavi SR Abdom Radiol (NY); 2022 Nov; 47(11):3645-3659. PubMed ID: 35951085 [TBL] [Abstract][Full Text] [Related]
39. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510 [TBL] [Abstract][Full Text] [Related]
40. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer]. Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]