These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38512810)
1. Improving the reliability of underwater gait analysis using wearable pressure and inertial sensors. Monoli C; Galli M; Tuhtan JA PLoS One; 2024; 19(3):e0300100. PubMed ID: 38512810 [TBL] [Abstract][Full Text] [Related]
2. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
3. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors. Fantozzi S; Giovanardi A; Borra D; Gatta G PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131 [TBL] [Abstract][Full Text] [Related]
4. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population. De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K Clin Biomech (Bristol); 2018 May; 54():22-27. PubMed ID: 29533844 [TBL] [Abstract][Full Text] [Related]
5. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults. Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485 [No Abstract] [Full Text] [Related]
6. Kinematic analysis of gait in an underwater treadmill using land-based Vicon T 40s motion capture cameras arranged externally. Raghu SL; Conners RT; Kang CK; Landrum DB; Whitehead PN J Biomech; 2021 Jul; 124():110553. PubMed ID: 34161842 [TBL] [Abstract][Full Text] [Related]
7. A flexible wearable sensor for knee flexion assessment during gait. Papi E; Bo YN; McGregor AH Gait Posture; 2018 May; 62():480-483. PubMed ID: 29674288 [TBL] [Abstract][Full Text] [Related]
8. Validation of a Wearable System for Lower Extremity Assessment. Zhang H; Song Y; Li C; Dou Y; Wang D; Wu Y; Chen X; Liu D Orthop Surg; 2023 Nov; 15(11):2911-2917. PubMed ID: 37545175 [TBL] [Abstract][Full Text] [Related]
9. Estimating Lower Limb Kinematics Using a Reduced Wearable Sensor Count. Sy L; Raitor M; Rosario MD; Khamis H; Kark L; Lovell NH; Redmond SJ IEEE Trans Biomed Eng; 2021 Apr; 68(4):1293-1304. PubMed ID: 32970590 [TBL] [Abstract][Full Text] [Related]
10. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome. Feuvrier F; Sijobert B; Azevedo C; Griffiths K; Alonso S; Dupeyron A; Laffont I; Froger J Ann Phys Rehabil Med; 2020 May; 63(3):195-201. PubMed ID: 31009801 [TBL] [Abstract][Full Text] [Related]
11. Side to side kinematic gait differences within patients and spatiotemporal and kinematic gait differences between patients with severe knee osteoarthritis and controls measured with inertial sensors. Ismailidis P; Hegglin L; Egloff C; Pagenstert G; Kernen R; Eckardt A; Ilchmann T; Nüesch C; Mündermann A Gait Posture; 2021 Feb; 84():24-30. PubMed ID: 33260078 [TBL] [Abstract][Full Text] [Related]
12. Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients. Kayaalp ME; Agres AN; Reichmann J; Bashkuev M; Duda GN; Becker R Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783551 [TBL] [Abstract][Full Text] [Related]
13. Comparability between wearable inertial sensors and an electronic walkway for spatiotemporal and relative phase data in young children aged 6-11 years. Carroll K; Kennedy RA; Koutoulas V; Werake U; Bui M; Kraan CM Gait Posture; 2024 Jun; 111():30-36. PubMed ID: 38615566 [TBL] [Abstract][Full Text] [Related]
14. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection. Song S; Fernandes NJ; Nordin AD Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002 [TBL] [Abstract][Full Text] [Related]
15. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty. Bravi M; Gallotta E; Morrone M; Maselli M; Santacaterina F; Toglia R; Foti C; Sterzi S; Bressi F; Miccinilli S Gait Posture; 2020 Feb; 76():175-181. PubMed ID: 31862666 [TBL] [Abstract][Full Text] [Related]
16. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors. Nilsson S; Ertzgaard P; Lundgren M; Grip H Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161916 [TBL] [Abstract][Full Text] [Related]
17. Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings. Haji Hassani R; Willi R; Rauter G; Bolliger M; Seel T Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684860 [TBL] [Abstract][Full Text] [Related]
18. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337 [TBL] [Abstract][Full Text] [Related]
19. Validity and Reproducibility of Inertial Physilog Sensors for Spatiotemporal Gait Analysis in Patients With Stroke. Lefeber N; Degelaen M; Truyers C; Safin I; Beckwee D IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1865-1874. PubMed ID: 31352347 [TBL] [Abstract][Full Text] [Related]
20. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. Kobsar D; Charlton JM; Tse CTF; Esculier JF; Graffos A; Krowchuk NM; Thatcher D; Hunt MA J Neuroeng Rehabil; 2020 May; 17(1):62. PubMed ID: 32393301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]