BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38512867)

  • 1. GoT-Splice protocol for multi-omics profiling of gene expression, cell-surface proteins, mutational status, and RNA splicing in human cells.
    Ganesan S; Cortés-López M; Swett AD; Dai X; Hickey S; Chamely P; Hawkins AG; Juul S; Landau DA; Gaiti F
    STAR Protoc; 2024 Jun; 5(2):102966. PubMed ID: 38512867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths.
    Cortés-López M; Chamely P; Hawkins AG; Stanley RF; Swett AD; Ganesan S; Mouhieddine TH; Dai X; Kluegel L; Chen C; Batta K; Furer N; Vedula RS; Beaulaurier J; Drong AW; Hickey S; Dusaj N; Mullokandov G; Stasiw AM; Su J; Chaligné R; Juul S; Harrington E; Knowles DA; Potenski CJ; Wiseman DH; Tanay A; Shlush L; Lindsley RC; Ghobrial IM; Taylor J; Abdel-Wahab O; Gaiti F; Landau DA
    Cell Stem Cell; 2023 Sep; 30(9):1262-1281.e8. PubMed ID: 37582363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collection of cells for single-cell RNA sequencing using high-resolution fluorescence microscopy.
    Segeren HA; Andree KC; Oomens L; Westendorp B
    STAR Protoc; 2021 Sep; 2(3):100718. PubMed ID: 34401784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for scChaRM-seq: Simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells.
    Yan R; Cheng X; Guo F
    STAR Protoc; 2021 Dec; 2(4):100972. PubMed ID: 34849489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for the isolation and single-nuclei multiomic analyses of the human fetal epicardium.
    Travisano SI; Lien CL
    STAR Protoc; 2024 Jun; 5(2):102973. PubMed ID: 38517898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scNanoCOOL-seq: a long-read single-cell sequencing method for multi-omics profiling within individual cells.
    Lin J; Xue X; Wang Y; Zhou Y; Wu J; Xie H; Liu M; Wen L; Tang F
    Cell Res; 2023 Nov; 33(11):879-882. PubMed ID: 37700167
    [No Abstract]   [Full Text] [Related]  

  • 7. Single-cell sequencing techniques from individual to multiomics analyses.
    Kashima Y; Sakamoto Y; Kaneko K; Seki M; Suzuki Y; Suzuki A
    Exp Mol Med; 2020 Sep; 52(9):1419-1427. PubMed ID: 32929221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-Read RNA-Seq.
    Hu R; Islam MN; Varghese RS; Ressom HW
    Methods Mol Biol; 2024; 2822():245-262. PubMed ID: 38907923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AbSeq Protocol Using the Nano-Well Cartridge-Based Rhapsody Platform to Generate Protein and Transcript Expression Data on the Single-Cell Level.
    Erickson JR; Mair F; Bugos G; Martin J; Tyznik AJ; Nakamoto M; Mortimer S; Prlic M
    STAR Protoc; 2020 Sep; 1(2):. PubMed ID: 33000001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparing Highly Viable Single-Cell Suspensions from Mouse Pancreatic Islets for Single-Cell RNA Sequencing.
    Lee H; Engin F
    STAR Protoc; 2020 Dec; 1(3):100144. PubMed ID: 33377038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniaturization of Smart-seq2 for Single-Cell and Single-Nucleus RNA Sequencing.
    Jaeger BN; Yángüez E; Gesuita L; Denoth-Lippuner A; Kruse M; Karayannis T; Jessberger S
    STAR Protoc; 2020 Sep; 1(2):100081. PubMed ID: 33000004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Measurement of Surface Proteins and Gene Expression from Single Cells.
    Luo J; Erb CA; Chen K
    Methods Mol Biol; 2020; 2111():35-46. PubMed ID: 31933196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining Alternative Protein Isoform Expression Using RNA Sequencing and Mass Spectrometry.
    Han Y; Wright JM; Lau E; Lam MPY
    STAR Protoc; 2020 Dec; 1(3):100138. PubMed ID: 33377032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface protein imputation from single cell transcriptomes by deep neural networks.
    Zhou Z; Ye C; Wang J; Zhang NR
    Nat Commun; 2020 Jan; 11(1):651. PubMed ID: 32005835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Conjugation of Antibodies for the Simultaneous Detection of Surface Proteins and Transcriptome Analysis at a Single-Cell Level.
    Kleino I; Kekäläinen E; Lönnberg T
    Methods Mol Biol; 2020; 2184():31-45. PubMed ID: 32808216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol to decode the role of transcriptionally active microbes in SARS-CoV-2-positive patients using an RNA-seq-based approach.
    Yadav A; Devi P; Kumari P; Maurya R; Shamim U; Pandey R
    STAR Protoc; 2024 Jun; 5(2):103071. PubMed ID: 38768029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial multi-omics sequencing for fixed tissue via DBiT-seq.
    Su G; Qin X; Enninful A; Bai Z; Deng Y; Liu Y; Fan R
    STAR Protoc; 2021 Jun; 2(2):100532. PubMed ID: 34027489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scGR-seq: Integrated analysis of glycan and RNA in single cells.
    Odaka H; Ozaki H; Tateno H
    STAR Protoc; 2022 Mar; 3(1):101179. PubMed ID: 35243371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.