BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 38512909)

  • 21. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
    Lennicke C; Cochemé HM
    Mol Cell; 2021 Sep; 81(18):3691-3707. PubMed ID: 34547234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive oxygen species in cancer: Current findings and future directions.
    Nakamura H; Takada K
    Cancer Sci; 2021 Oct; 112(10):3945-3952. PubMed ID: 34286881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antitumor activity of Koningic acid in thyroid cancer by inhibiting cellular glycolysis.
    Jing C; Li Y; Gao Z; Wang R
    Endocrine; 2022 Jan; 75(1):169-177. PubMed ID: 34264510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Mitochondria in Melanoma.
    Aminzadeh-Gohari S; Weber DD; Catalano L; Feichtinger RG; Kofler B; Lang R
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 33007949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction.
    Aplak E; von Montfort C; Haasler L; Stucki D; Steckel B; Reichert AS; Stahl W; Brenneisen P
    PLoS One; 2020; 15(1):e0227926. PubMed ID: 31951630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monocarboxylate transporters in cancer.
    Payen VL; Mina E; Van Hée VF; Porporato PE; Sonveaux P
    Mol Metab; 2020 Mar; 33():48-66. PubMed ID: 31395464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein Redox State Monitoring Studies of Thiol Reactivity.
    Suzuki YJ; Marcocci L; Shimomura T; Tatenaka Y; Ohuchi Y; Brelidze TI
    Antioxidants (Basel); 2019 May; 8(5):. PubMed ID: 31121865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocompatibility studies on cerium oxide nanoparticles - combined study for local effects, systemic toxicity and genotoxicity
    Kalyanaraman V; Naveen SV; Mohana N; Balaje RM; Navaneethakrishnan KR; Brabu B; Murugan SS; Kumaravel TS
    Toxicol Res (Camb); 2019 Jan; 8(1):25-37. PubMed ID: 30713658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano based drug delivery systems: recent developments and future prospects.
    Patra JK; Das G; Fraceto LF; Campos EVR; Rodriguez-Torres MDP; Acosta-Torres LS; Diaz-Torres LA; Grillo R; Swamy MK; Sharma S; Habtemariam S; Shin HS
    J Nanobiotechnology; 2018 Sep; 16(1):71. PubMed ID: 30231877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficacy of Different Compositions of Cerium Oxide Nanoparticles in Tumor-Stroma Interaction.
    Sack-Zschauer M; Karaman-Aplak E; Wyrich C; Das S; Schubert T; Meyer H; Janiak C; Seal S; Stahl W; Brenneisen P
    J Biomed Nanotechnol; 2017 Dec; 13(12):1735-1746. PubMed ID: 29490761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective.
    Brenneisen P; Reichert AS
    Antioxidants (Basel); 2018 Feb; 7(2):. PubMed ID: 29470419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of nanoparticle systems in drug delivery technology.
    Rizvi SAA; Saleh AM
    Saudi Pharm J; 2018 Jan; 26(1):64-70. PubMed ID: 29379334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer.
    Chaiswing L; St Clair WH; St Clair DK
    Antioxid Redox Signal; 2018 Nov; 29(13):1237-1272. PubMed ID: 29325444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells.
    Reisz JA; Wither MJ; Dzieciatkowska M; Nemkov T; Issaian A; Yoshida T; Dunham AJ; Hill RC; Hansen KC; D'Alessandro A
    Blood; 2016 Sep; 128(12):e32-42. PubMed ID: 27405778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress: a concept in redox biology and medicine.
    Sies H
    Redox Biol; 2015; 4():180-3. PubMed ID: 25588755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?
    Hildebrandt T; Knuesting J; Berndt C; Morgan B; Scheibe R
    Biol Chem; 2015 May; 396(5):523-37. PubMed ID: 25581756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation.
    Peralta D; Bronowska AK; Morgan B; Dóka É; Van Laer K; Nagy P; Gräter F; Dick TP
    Nat Chem Biol; 2015 Feb; 11(2):156-63. PubMed ID: 25580853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The melanoma revolution: from UV carcinogenesis to a new era in therapeutics.
    Lo JA; Fisher DE
    Science; 2014 Nov; 346(6212):945-9. PubMed ID: 25414302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review).
    Zheng J
    Oncol Lett; 2012 Dec; 4(6):1151-1157. PubMed ID: 23226794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Downregulation of tumor growth and invasion by redox-active nanoparticles.
    Alili L; Sack M; von Montfort C; Giri S; Das S; Carroll KS; Zanger K; Seal S; Brenneisen P
    Antioxid Redox Signal; 2013 Sep; 19(8):765-78. PubMed ID: 23198807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.