These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 385130)

  • 1. Outgrowth and sporulation studies on Clostridium botulinum type E: influence of isoleucine.
    Hawirko RZ; Naccarato CA; Lee RP; Maeba PY
    Can J Microbiol; 1979 Apr; 25(4):522-7. PubMed ID: 385130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. II. MATURATION OF FORESPORES.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):695-701. PubMed ID: 14208509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential amino acid requirements for sporulation in Bacillus subtilis.
    Doering JL; Bott KF
    J Bacteriol; 1972 Oct; 112(1):345-55. PubMed ID: 4627926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoleucine synthesis by Clostridium sporogenes from propionate or alpha-methylbutyrate.
    Monticello DJ; Hadioetomo RS; Costilow RN
    J Gen Microbiol; 1984 Feb; 130(2):309-18. PubMed ID: 6726176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of butyric type of fermentation in sporogenic and asporogenic mutants of Clostridium botulinum.
    Emeruwa AC; Hawirko RZ; Halvorson H; Suzuki I
    J Bacteriol; 1974 Oct; 120(1):74-80. PubMed ID: 4607590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of improved defined media for Clostridium botulinum serotypes A, B, and E.
    Whitmer ME; Johnson EA
    Appl Environ Microbiol; 1988 Mar; 54(3):753-9. PubMed ID: 3288120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502.
    Kirk DG; Zhang Z; Korkeala H; Lindström M
    Appl Environ Microbiol; 2014 Aug; 80(16):5141-50. PubMed ID: 24928875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores.
    Lenz CA; Vogel RF
    Food Microbiol; 2014 Dec; 44():156-67. PubMed ID: 25084658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. I. CORRELATION OF MORPHOLOGICAL CHANGES WITH CATABOLIC ACTIVITIES, SYNTHESIS OF DIPICOLINIC ACID, AND DEVELOPMENT OF HEAT RESISTANCE.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):690-4. PubMed ID: 14208508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sodium chloride and pH on the outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1966 Jan; 14(1):49-54. PubMed ID: 5330680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-beta-hydroxybutyrate metabolism during growth and sporulation of Clostridium botulinum.
    Emeruwa AC; Hawirko RZ
    J Bacteriol; 1973 Nov; 116(2):989-93. PubMed ID: 4583258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents.
    Lenz CA; Vogel RF
    Food Microbiol; 2015 Apr; 46():434-442. PubMed ID: 25475313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sporulation of Clostridium botulinum. II. Effect of arginine and its degradation products on sporulation in a synthetic medium.
    PERKINS WE; TSUJI K
    J Bacteriol; 1962 Jul; 84(1):86-94. PubMed ID: 14485384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sporulation of Clostridium botulinum. I. Selection of an aparticulate sporulation medium.
    TSUJI K; PERKINS WE
    J Bacteriol; 1962 Jul; 84(1):81-5. PubMed ID: 13922872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting effects of heat treatment and incubation temperature on germination and outgrowth of individual spores of nonproteolytic Clostridium botulinum bacteria.
    Stringer SC; Webb MD; Peck MW
    Appl Environ Microbiol; 2009 May; 75(9):2712-9. PubMed ID: 19270146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic clostridium botulinum.
    Webb MD; Pin C; Peck MW; Stringer SC
    Appl Environ Microbiol; 2007 Apr; 73(7):2118-27. PubMed ID: 17277206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in resistance to radiation and heat during sporulation and germination of Clostridium botulinum 33A.
    Durban E; Goodnow R; Grecz N
    J Bacteriol; 1970 May; 102(2):590-2. PubMed ID: 4911549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of plating medium on heat activation requirement of Clostridium botulinum spores.
    Montville TJ
    Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores.
    Kihm DJ; Hutton MT; Hanlin JH; Johnson EA
    Appl Environ Microbiol; 1990 Mar; 56(3):681-5. PubMed ID: 2180370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.