BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38513017)

  • 1. Efficient formation of single-copy human artificial chromosomes.
    Gambogi CW; Birchak GJ; Mer E; Brown DM; Yankson G; Kixmoeller K; Gavade JN; Espinoza JL; Kashyap P; Dupont CL; Logsdon GA; Heun P; Glass JI; Black BE
    Science; 2024 Mar; 383(6689):1344-1349. PubMed ID: 38513017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Formation of Single-copy Human Artificial Chromosomes.
    Gambogi CW; Mer E; Brown DM; Yankson G; Gavade JN; Logsdon GA; Heun P; Glass JI; Black BE
    bioRxiv; 2023 Jun; ():. PubMed ID: 37546784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Artificial Chromosomes that Bypass Centromeric DNA.
    Logsdon GA; Gambogi CW; Liskovykh MA; Barrey EJ; Larionov V; Miga KH; Heun P; Black BE
    Cell; 2019 Jul; 178(3):624-639.e19. PubMed ID: 31348889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and epigenetic regulation of centromeres: a look at HAC formation.
    Ohzeki J; Larionov V; Earnshaw WC; Masumoto H
    Chromosome Res; 2015 Feb; 23(1):87-103. PubMed ID: 25682171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable.
    Alazami AM; Mejía JE; Monaco ZL
    Genomics; 2004 May; 83(5):844-51. PubMed ID: 15081114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA.
    Gambogi CW; Dawicki-McKenna JM; Logsdon GA; Black BE
    Exp Cell Res; 2020 Jun; 391(2):111978. PubMed ID: 32246994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres.
    Masumoto H; Nakano M; Ohzeki J
    Chromosome Res; 2004; 12(6):543-56. PubMed ID: 15289662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of artificial chromosome centromeres in human and murine cells.
    Moralli D; Jefferson A; Valeria Volpi E; Larin Monaco Z
    Eur J Hum Genet; 2013 Sep; 21(9):948-56. PubMed ID: 23403904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centromeric chromatin in fission yeast.
    Partridge JF
    Front Biosci; 2008 May; 13():3896-905. PubMed ID: 18508483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory.
    Martins NMC; Cisneros-Soberanis F; Pesenti E; Kochanova NY; Shang WH; Hori T; Nagase T; Kimura H; Larionov V; Masumoto H; Fukagawa T; Earnshaw WC
    J Cell Sci; 2020 Jul; 133(14):. PubMed ID: 32576667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies.
    Kouprina N; Petrov N; Molina O; Liskovykh M; Pesenti E; Ohzeki JI; Masumoto H; Earnshaw WC; Larionov V
    ACS Synth Biol; 2018 Sep; 7(9):1974-1989. PubMed ID: 30075081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a Synthetic Human Chromosome with Two Centromeric Domains for Advanced Epigenetic Engineering Studies.
    Pesenti E; Kouprina N; Liskovykh M; Aurich-Costa J; Larionov V; Masumoto H; Earnshaw WC; Molina O
    ACS Synth Biol; 2018 Apr; 7(4):1116-1130. PubMed ID: 29565577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using human artificial chromosomes to study centromere assembly and function.
    Molina O; Kouprina N; Masumoto H; Larionov V; Earnshaw WC
    Chromosoma; 2017 Oct; 126(5):559-575. PubMed ID: 28688039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of a human kinetochore by specific targeting of chromatin modifiers.
    Nakano M; Cardinale S; Noskov VN; Gassmann R; Vagnarelli P; Kandels-Lewis S; Larionov V; Earnshaw WC; Masumoto H
    Dev Cell; 2008 Apr; 14(4):507-22. PubMed ID: 18410728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome.
    Nakashima H; Nakano M; Ohnishi R; Hiraoka Y; Kaneda Y; Sugino A; Masumoto H
    J Cell Sci; 2005 Dec; 118(Pt 24):5885-98. PubMed ID: 16339970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and epigenetic effects on centromere establishment.
    Ling YH; Lin Z; Yuen KWY
    Chromosoma; 2020 Mar; 129(1):1-24. PubMed ID: 31781852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HACking the centromere chromatin code: insights from human artificial chromosomes.
    Bergmann JH; Martins NM; Larionov V; Masumoto H; Earnshaw WC
    Chromosome Res; 2012 Jul; 20(5):505-19. PubMed ID: 22825423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching the centromeres on and off: epigenetic chromatin alterations provide plasticity in centromere activity stabilizing aberrant dicentric chromosomes.
    Sato H; Saitoh S
    Biochem Soc Trans; 2013 Dec; 41(6):1648-53. PubMed ID: 24256269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CENP-B controls centromere formation depending on the chromatin context.
    Okada T; Ohzeki J; Nakano M; Yoda K; Brinkley WR; Larionov V; Masumoto H
    Cell; 2007 Dec; 131(7):1287-300. PubMed ID: 18160038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B.
    Ohzeki JI; Otake K; Masumoto H
    Exp Cell Res; 2020 Apr; 389(2):111900. PubMed ID: 32044309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.