These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38513234)

  • 1. Multi-Scale Dispersion Engineering on Biomass-Derived Materials for Ultra-Wideband and Wide-Angle Microwave Absorption.
    Tan R; Liu Y; Li W; Zhou J; Chen P; Zavabeti A; Zeng H; Yao Z
    Small Methods; 2024 Mar; ():e2301772. PubMed ID: 38513234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Ultra-Wideband Electromagnetic-Wave-Absorbing Metastructure Inspired by Bionic Gyroid Structures.
    An Q; Li D; Liao W; Liu T; Joralmon D; Li X; Zhao J
    Adv Mater; 2023 Jun; 35(26):e2300659. PubMed ID: 36942913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ZnCl
    Wang L; Zhou P; Guo Y; Zhang J; Qiu X; Guan Y; Yu M; Zhu H; Zhang Q
    RSC Adv; 2019 Mar; 9(17):9718-9728. PubMed ID: 35520714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-dielectric absorber based on nano-graphite sheets/ionogels with configurable absorbing band.
    Wu Z; Luo J; Fang X; Zeng Y; Yang Y; Qiao S; Zou Y
    Opt Lett; 2024 Feb; 49(3):466-469. PubMed ID: 38300036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construct of CoZnO/CSP biomass-derived carbon composites with broad effective absorption bandwidth of 7.2 GHz and excellent microwave absorption performance.
    Zhao J; Wang H; Chen M; Li Y; Wang Z; Fang C; Liu P
    J Colloid Interface Sci; 2023 Jun; 639():160-170. PubMed ID: 36804789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing 1T/2H MoS
    Lyu L; Wang F; Li B; Zhang X; Qiao J; Yang Y; Liu J
    J Colloid Interface Sci; 2021 Mar; 586():613-620. PubMed ID: 33190837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Scale Design of Ultra-Broadband Microwave Metamaterial Absorber Based on Hollow Carbon/MXene/Mo
    Wang J; Wu Z; Xing Y; Li B; Huang P; Liu L
    Small; 2023 Apr; 19(14):e2207051. PubMed ID: 36642797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing a unified paradigm of microwave absorption inspired by the merging of traditional microwave absorbing materials and metamaterials.
    Guo M; Wang X; Zhuang H; Dai Y; Li W; Wei X; Tang D; Zhang B; Chen P; Yang Y
    Mater Horiz; 2023 Oct; 10(11):5202-5213. PubMed ID: 37725381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.
    Qiu X; Wang L; Zhu H; Guan Y; Zhang Q
    Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials.
    Hu R; Zhang F; Ye S; Fang G
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties.
    Shi Q; Zhao Y; Li M; Li B; Hu Z
    J Colloid Interface Sci; 2023 Jul; 641():449-458. PubMed ID: 36948100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step sintering construction of electromagnetic synergistic Co
    Zhao Y; Su S; Liu Z; Ren J; Wang L; Wang Y
    Phys Chem Chem Phys; 2024 Mar; 26(12):9475-9487. PubMed ID: 38450519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of multi-material broadband electromagnetic absorbers for use in cavity-backed antennas.
    Gupta E; Bonner C; Muhammed F; McParland K; Mirotznik M
    Heliyon; 2023 Mar; 9(3):e14164. PubMed ID: 36967905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of a magnetic iron/nitrogen-doped graphitized carbon composite with boosted microwave attenuation ability as the wideband microwave absorber.
    Chen C; Chen W; Zong B; Ding X; Dong H
    Nanoscale Adv; 2021 Apr; 3(8):2343-2350. PubMed ID: 36133754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption.
    Hu Q; Yang R; Yang S; Huang W; Zeng Z; Gui X
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10577-10587. PubMed ID: 35188369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.