These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38513234)
41. Natural Hollow Fiber-Derived Carbon Microtube with Broadband Microwave Attenuation Capacity. Zhao Y; Long A; Zhao P; Liao L; Wang R; Li G; Wang B; Liao X; Yu R; Liao J Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365495 [TBL] [Abstract][Full Text] [Related]
42. A Sustainable and Low-Cost Route to Design NiFe Li W; Guo F; Zhao Y; Liu Y Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432351 [TBL] [Abstract][Full Text] [Related]
44. Enhancement of microwave absorption performance of porous carbon induced by Ce (CO Wang J; Chen Y; Wei Y; Li Y; Li F; Li B; Wu Q; Zhao J Front Chem; 2022; 10():1100111. PubMed ID: 36700076 [TBL] [Abstract][Full Text] [Related]
45. Ultra-Wideband Flexible Absorber in Microwave Frequency Band. Fan S; Song Y Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266 [TBL] [Abstract][Full Text] [Related]
46. Thermal stability of Ni Sun X; Wang Y; Kimura H; Ni C; Hou C; Wang B; Zhang Y; Yang X; Yu R; Du W; Xie X J Colloid Interface Sci; 2023 Jul; 642():447-461. PubMed ID: 37023516 [TBL] [Abstract][Full Text] [Related]
47. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. Jiang R; Wang Y; Wang J; He Q; Wu G J Colloid Interface Sci; 2023 Oct; 648():25-36. PubMed ID: 37295367 [TBL] [Abstract][Full Text] [Related]
48. In-situ growth of core-shell ZnFe Chai L; Wang Y; Zhou N; Du Y; Zeng X; Zhou S; He Q; Wu G J Colloid Interface Sci; 2021 Jan; 581(Pt B):475-484. PubMed ID: 32805668 [TBL] [Abstract][Full Text] [Related]
49. Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. Wang J; Zhou M; Xie Z; Hao X; Tang S; Wang J; Zou Z; Ji G J Colloid Interface Sci; 2022 Apr; 612():146-155. PubMed ID: 34992015 [TBL] [Abstract][Full Text] [Related]
52. Hierarchical engineering of Large-caliber carbon Nanotube/Mesoporous Carbon/Fe Ban Q; Li Y; Qin Y; Zheng Y; Xie X; Yu Z; Kong J J Colloid Interface Sci; 2022 Jun; 616():618-630. PubMed ID: 35240440 [TBL] [Abstract][Full Text] [Related]
53. Controllable preparation of 2D carbon paper modified with flower-like WS Chen H; Xu Z; Zhou Y; Zhang M; Feng S; Bu X; Zhang Z; He M Dalton Trans; 2023 Mar; 52(10):3085-3096. PubMed ID: 36786669 [TBL] [Abstract][Full Text] [Related]
54. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Zhang C; Yin S; Long C; Dong BW; He D; Cheng Q Opt Express; 2021 Apr; 29(9):14078-14086. PubMed ID: 33985133 [TBL] [Abstract][Full Text] [Related]
55. Porous Carbonaceous Aerogels Composed of Multiscale Carbon-Based Units for High-Performance Microwave Absorption. Lin Z; Hao Y; Huang H; He Q; Su G; Wu C; Guo X; Xu L; Zhao Y ACS Appl Mater Interfaces; 2023 Nov; 15(47):54838-54850. PubMed ID: 37968844 [TBL] [Abstract][Full Text] [Related]
56. Snake Scale-Inspired Poly(vinylidene fluoride)/Ti Liu Y; Qi X; Deng X; Ye J; Fu Y; Fu S ACS Appl Mater Interfaces; 2023 Jun; 15(23):28491-28502. PubMed ID: 37256265 [TBL] [Abstract][Full Text] [Related]
57. 3D Honeycomb Fe/MXene Derived from Prussian Blue Microcubes with a Tunable Structure for Efficient Low-Frequency and Flexible Electromagnetic Absorbers. Liu J; Yu W; Zhao Z; Liu D; Liu S; Wang J; Ma M; Yu Q; Yang N ACS Appl Mater Interfaces; 2023 Oct; 15(41):48519-48528. PubMed ID: 37801394 [TBL] [Abstract][Full Text] [Related]
58. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption. Guo Z; Ren P; Zhang F; Duan H; Chen Z; Jin Y; Ren F; Li Z J Colloid Interface Sci; 2022 Mar; 610():1077-1087. PubMed ID: 34887064 [TBL] [Abstract][Full Text] [Related]
59. Highly dispersed Co/Co Lu Z; Wang Y; Cheng R; Yang L; Wang N J Colloid Interface Sci; 2023 May; 637():147-158. PubMed ID: 36689799 [TBL] [Abstract][Full Text] [Related]