BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38513891)

  • 1. An Automated and Fast Sample Preparation Workflow for Laser Microdissection Guided Ultrasensitive Proteomics.
    Makhmut A; Qin D; Hartlmayr D; Seth A; Coscia F
    Mol Cell Proteomics; 2024 May; 23(5):100750. PubMed ID: 38513891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for ultra-low-input spatial tissue proteomics.
    Makhmut A; Qin D; Fritzsche S; Nimo J; König J; Coscia F
    Cell Syst; 2023 Nov; 14(11):1002-1014.e5. PubMed ID: 37909047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue.
    Griesser E; Wyatt H; Ten Have S; Stierstorfer B; Lenter M; Lamond AI
    Mol Cell Proteomics; 2020 May; 19(5):839-851. PubMed ID: 32132230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hanging drop sample preparation improves sensitivity of spatial proteomics.
    Kwon Y; Piehowski PD; Zhao R; Sontag RL; Moore RJ; Burnum-Johnson KE; Smith RD; Qian WJ; Kelly RT; Zhu Y
    Lab Chip; 2022 Jul; 22(15):2869-2877. PubMed ID: 35838077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue.
    Braakman RB; Tilanus-Linthorst MM; Liu NQ; Stingl C; Dekker LJ; Luider TM; Martens JW; Foekens JA; Umar A
    J Proteomics; 2012 Jun; 75(10):2844-54. PubMed ID: 22296676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity.
    Ctortecka C; Hartlmayr D; Seth A; Mendjan S; Tourniaire G; Udeshi ND; Carr SA; Mechtler K
    Mol Cell Proteomics; 2023 Dec; 22(12):100665. PubMed ID: 37839701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples.
    Clair G; Piehowski PD; Nicola T; Kitzmiller JA; Huang EL; Zink EM; Sontag RL; Orton DJ; Moore RJ; Carson JP; Smith RD; Whitsett JA; Corley RA; Ambalavanan N; Ansong C
    Sci Rep; 2016 Dec; 6():39223. PubMed ID: 28004771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Type-Specific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform.
    Balasubramanian VK; Purvine SO; Liang Y; Kelly RT; Pasa-Tolic L; Chrisler WB; Blumwald E; Stewart CN; Zhu Y; Ahkami AH
    Curr Protoc; 2021 May; 1(5):e153. PubMed ID: 34043287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets.
    Zhu Y; Dou M; Piehowski PD; Liang Y; Wang F; Chu RK; Chrisler WB; Smith JN; Schwarz KC; Shen Y; Shukla AK; Moore RJ; Smith RD; Qian WJ; Kelly RT
    Mol Cell Proteomics; 2018 Sep; 17(9):1864-1874. PubMed ID: 29941660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis.
    Coscia F; Doll S; Bech JM; Schweizer L; Mund A; Lengyel E; Lindebjerg J; Madsen GI; Moreira JM; Mann M
    J Pathol; 2020 May; 251(1):100-112. PubMed ID: 32154592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain.
    Davis S; Scott C; Ansorge O; Fischer R
    J Proteome Res; 2019 Apr; 18(4):1787-1795. PubMed ID: 30768908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications.
    Ctortecka C; Clark NM; Boyle B; Seth A; Mani DR; Udeshi ND; Carr SA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mass spectrometry-based workflow for the proteomic analysis of in vitro cultured cell subsets isolated by means of laser capture microdissection.
    Brioschi M; Eligini S; Crisci M; Fiorelli S; Tremoli E; Colli S; Banfi C
    Anal Bioanal Chem; 2014 May; 406(12):2817-25. PubMed ID: 24633565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of Laser Capture Microdissection Coupled to Mass Spectrometry to Uncover the Proteome of Cellular Protrusions.
    Gordon A; Gousset K
    Methods Mol Biol; 2021; 2259():25-45. PubMed ID: 33687707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Laser Microdissection-Liquid Chromatography-Tandem Mass Spectrometry Workflow for Post-mortem Analysis of Brain Tissue.
    Hondius DC; Hoozemans JJM; Rozemuller AJM; Li KW; Smit AB
    Methods Mol Biol; 2018; 1723():371-383. PubMed ID: 29344872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection.
    Zhang L; Lanzoni G; Battarra M; Inverardi L; Zhang Q
    J Proteomics; 2017 Jan; 150():149-159. PubMed ID: 27620696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High-Throughput Workflow for FFPE Tissue Proteomics.
    Pujari GP; Mangalaparthi KK; Madden BJ; Bhat FA; Charlesworth MC; French AJ; Sachdeva G; Daviso E; Thomann U; McCarthy P; Vasantgadkar S; Bhattacharyya D; Pandey A
    J Am Soc Mass Spectrom; 2023 Jul; 34(7):1225-1229. PubMed ID: 37267530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Proteomic Analysis of Mass Limited Tissue Samples for Spatially Resolved Tissue Profiling.
    Piehowski PD; Zhao R; Moore RJ; Clair G; Ansong C
    Methods Mol Biol; 2018; 1788():269-277. PubMed ID: 28980276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially Resolved Proteome Profiling of <200 Cells from Tomato Fruit Pericarp by Integrating Laser-Capture Microdissection with Nanodroplet Sample Preparation.
    Liang Y; Zhu Y; Dou M; Xu K; Chu RK; Chrisler WB; Zhao R; Hixson KK; Kelly RT
    Anal Chem; 2018 Sep; 90(18):11106-11114. PubMed ID: 30118597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics.
    Huang P; Kong Q; Gao W; Chu B; Li H; Mao Y; Cai Z; Xu R; Tian R
    Anal Chim Acta; 2020 Aug; 1127():140-148. PubMed ID: 32800117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.