BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38514393)

  • 1. Quinone Methide Based Self-Immobilizing Molecular Fluorescent Probes for In Situ Imaging of Enzymes.
    Miao Y; Yu ZQ; Xu S; Yan M
    Chem Asian J; 2024 May; 19(10):e202400189. PubMed ID: 38514393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile toolbox for investigating biological processes based on quinone methide chemistry: From self-immolative linkers to self-immobilizing agents.
    Abe A; Kamiya M
    Bioorg Med Chem; 2021 Aug; 44():116281. PubMed ID: 34216983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Multiple-Labeling Probes for the Visualization of Enzyme Activities.
    Song H; Li Y; Chen Y; Xue C; Xie H
    Chemistry; 2019 Nov; 25(61):13994-14002. PubMed ID: 31506999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activatable fluorescent probes for
    Wu X; Wang R; Kwon N; Ma H; Yoon J
    Chem Soc Rev; 2022 Jan; 51(2):450-463. PubMed ID: 34951429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress of self-immobilizing and self-precipitating molecular fluorescent probes for higher-spatial-resolution imaging.
    Yan J; Liu H; Wu Y; Niu B; Deng X; Zhang L; Dang Q; Wang Y; Lu X; Zhang B; Sun W
    Biomaterials; 2023 Oct; 301():122281. PubMed ID: 37643487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of an ER-specific fluorescent probe based on carboxylesterase activity with quinone methide cleavage process.
    Hakamata W; Machida A; Oku T; Nishio T
    Bioorg Med Chem Lett; 2011 Jun; 21(11):3206-9. PubMed ID: 21549595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Senescence-associated sialidase revealed by an activatable fluorescence-on labeling probe.
    Zhu R; Wang S; Xue Z; Han J; Han S
    Chem Commun (Camb); 2018 Oct; 54(82):11566-11569. PubMed ID: 30259042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of optical probes with excellent intracellular retention].
    Kawatani M; Kamiya M; Urano Y
    Nihon Yakurigaku Zasshi; 2024; 159(1):18-24. PubMed ID: 38171832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition Moieties of Small Molecular Fluorescent Probes for Bioimaging of Enzymes.
    Wu X; Shi W; Li X; Ma H
    Acc Chem Res; 2019 Jul; 52(7):1892-1904. PubMed ID: 31243972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorogenic and Mitochondria-Localizable Probe Enables Selective Labeling and Imaging of Nitroreductase.
    Wang S; Tan W; Lang W; Qian H; Guo S; Zhu L; Ge J
    Anal Chem; 2022 May; 94(20):7272-7277. PubMed ID: 35549110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Visualization of γ-Glutamyl Transpeptidase Activity with an Activatable Self-Immobilizing Near-Infrared Probe.
    Li Y; Xue C; Fang Z; Xu W; Xie H
    Anal Chem; 2020 Nov; 92(22):15017-15024. PubMed ID: 33141566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenched quinone methide based activity probes--a cautionary tale.
    Sellars JD; Landrum M; Congreve A; Dixon DP; Mosely JA; Beeby A; Edwards R; Steel PG
    Org Biomol Chem; 2010 Apr; 8(7):1610-8. PubMed ID: 20237672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols.
    Huang ST; Ting KN; Wang KL
    Anal Chim Acta; 2008 Jul; 620(1-2):120-6. PubMed ID: 18558132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells.
    Jiang J; Tan Q; Zhao S; Song H; Hu L; Xie H
    Chem Commun (Camb); 2019 Dec; 55(99):15000-15003. PubMed ID: 31777880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-Instructed Aggregation/Dispersion of Fluorophores for Near-Infrared Fluorescence Imaging In Vivo.
    Zhang Z; Chen P; Sun Y
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly.
    Yan R; Hu Y; Liu F; Wei S; Fang D; Shuhendler AJ; Liu H; Chen HY; Ye D
    J Am Chem Soc; 2019 Jul; 141(26):10331-10341. PubMed ID: 31244188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinone Methide-Based Organophosphate Hydrolases Inhibitors: Trans Proximity Labelers versus Cis Labeling Activity-Based Probes.
    Dubovetskyi A; Cherukuri KP; Ashani Y; Meshcheriakova A; Reuveny E; Ben-Nissan G; Sharon M; Fumagalli L; Tawfik DS
    Chembiochem; 2021 Mar; 22(5):894-903. PubMed ID: 33105515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of sulfatase-directed quinone methide traps for proteomics.
    Lenger J; Schröder M; Ennemann EC; Müller B; Wong CH; Noll T; Dierks T; Hanson SR; Sewald N
    Bioorg Med Chem; 2012 Jan; 20(2):622-7. PubMed ID: 21570853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging.
    Cheng D; Xu W; Gong X; Yuan L; Zhang XB
    Acc Chem Res; 2021 Jan; 54(2):403-415. PubMed ID: 33382249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-immobilizing fluorogenic imaging agents of enzyme activity.
    Kwan DH; Chen HM; Ratananikom K; Hancock SM; Watanabe Y; Kongsaeree PT; Samuels AL; Withers SG
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):300-3. PubMed ID: 21184404
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.