These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38514472)

  • 1. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction.
    Fujita N; Yasaka K; Hatano S; Sakamoto N; Kurokawa R; Abe O
    Neuroradiology; 2024 Jul; 66(7):1105-1112. PubMed ID: 38514472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction.
    Zhang D; Mu C; Zhang X; Yan J; Xu M; Wang Y; Wang Y; Xue H; Chen Y; Jin Z
    BMC Med Imaging; 2023 Feb; 23(1):33. PubMed ID: 36800947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction.
    Oostveen LJ; Smit EJ; Dekker HM; Buckens CF; Pegge SAH; de Lange F; Sechopoulos I; Prokop M
    AJR Am J Roentgenol; 2023 Mar; 220(3):381-388. PubMed ID: 36259592
    [No Abstract]   [Full Text] [Related]  

  • 4. Deep-Learning Reconstruction of High-Resolution CT Improves Interobserver Agreement for the Evaluation of Pulmonary Fibrosis.
    Hamada A; Yasaka K; Hatano S; Kurokawa M; Inui S; Kubo T; Watanabe Y; Abe O
    Can Assoc Radiol J; 2024 Aug; 75(3):542-548. PubMed ID: 38293802
    [No Abstract]   [Full Text] [Related]  

  • 5. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 6. Deep learning-based reconstruction can improve the image quality of low radiation dose head CT.
    Nagayama Y; Iwashita K; Maruyama N; Uetani H; Goto M; Sakabe D; Emoto T; Nakato K; Shigematsu S; Kato Y; Takada S; Kidoh M; Oda S; Nakaura T; Hatemura M; Ueda M; Mukasa A; Hirai T
    Eur Radiol; 2023 May; 33(5):3253-3265. PubMed ID: 36973431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Deep-Learning Image Reconstruction With Hybrid Iterative Reconstruction for Evaluating Lung Nodules With High-Resolution Computed Tomography.
    Hamada A; Yasaka K; Inui S; Okimoto N; Abe O
    J Comput Assist Tomogr; 2023 Jul-Aug 01; 47(4):583-589. PubMed ID: 36877787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY
    Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T
    Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.
    Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K
    Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Taguchi N; Maruyama N; Takada S; Uchimura R; Hayashi H; Kidoh M; Oda S; Nakaura T; Funama Y; Hatemura M; Hirai T
    Eur J Radiol; 2022 Jun; 151():110280. PubMed ID: 35381567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo depiction of cortical bone vascularization with ultra-high resolution-CT and deep learning algorithm reconstruction using osteoid osteoma as a model.
    Boubaker F; Teixeira PAG; Hossu G; Douis N; Gillet P; Blum A; Gillet R
    Diagn Interv Imaging; 2024 Jan; 105(1):26-32. PubMed ID: 37482455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction.
    Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH
    Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-high-resolution CT of the temporal bone: Comparison between deep learning reconstruction and hybrid and model-based iterative reconstruction.
    Beysang A; Villani N; Boubaker F; Puel U; Eliezer M; Hossu G; Haioun K; Blum A; Teixeira PAG; Parietti-Winkler C; Gillet R
    Diagn Interv Imaging; 2024 Jun; 105(6):233-242. PubMed ID: 38368178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK
    AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501
    [No Abstract]   [Full Text] [Related]  

  • 16. Assessing the Effects of Deep Learning Reconstruction on Abdominal CT Without Arm Elevation.
    Fujita N; Yasaka K; Katayama A; Ohtake Y; Konishiike M; Abe O
    Can Assoc Radiol J; 2023 Nov; 74(4):688-694. PubMed ID: 37041699
    [No Abstract]   [Full Text] [Related]  

  • 17. [Quantitative Analysis of Emphysema in Ultra-high-resolution CT by Using Deep Learning Reconstruction: Comparison with Hybrid Iterative Reconstruction].
    Muramatsu S; Sato K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(11):1163-1172. PubMed ID: 33229846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis.
    Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H
    Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation.
    Hata A; Yanagawa M; Yoshida Y; Miyata T; Tsubamoto M; Honda O; Tomiyama N
    AJR Am J Roentgenol; 2020 Dec; 215(6):1321-1328. PubMed ID: 33052702
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.