These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38514929)

  • 1. Reducing femoral flow artefacts in radial magnetic resonance fingerprinting of the prostate using region-optimised virtual coils.
    Sørland KI; Trimble CG; Wu CY; Bathen TF; Elschot M; Cloos MA
    NMR Biomed; 2024 Aug; 37(8):e5136. PubMed ID: 38514929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative longitudinal mapping of radiation-treated prostate cancer using MR fingerprinting with radial acquisition and subspace reconstruction.
    Yu VY; Otazo R; Wu C; Subashi E; Baumann M; Koken P; Doneva M; Mazurkewitz P; Shasha D; Zelefsky M; Cervino L; Cohen O
    Magn Reson Imaging; 2023 Sep; 101():25-34. PubMed ID: 37015305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-optimized virtual (ROVir) coils: Localization and/or suppression of spatial regions using sensor-domain beamforming.
    Kim D; Cauley SF; Nayak KS; Leahy RM; Haldar JP
    Magn Reson Med; 2021 Jul; 86(1):197-212. PubMed ID: 33594732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial assessment of 3D magnetic resonance fingerprinting (MRF) towards quantitative brain imaging for radiation therapy.
    Lu L; Chen Y; Shen C; Lian J; Das S; Marks L; Lin W; Zhu T
    Med Phys; 2020 Mar; 47(3):1199-1214. PubMed ID: 31834641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancellation of streak artifacts in radial abdominal imaging using interference null space projection.
    Fu Z; Johnson K; Altbach MI; Bilgin A
    Magn Reson Med; 2022 Sep; 88(3):1355-1369. PubMed ID: 35608238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial streak artifact reduction using phased array beamforming.
    Mandava S; Keerthivasan MB; Martin DR; Altbach MI; Bilgin A
    Magn Reson Med; 2019 Jun; 81(6):3915-3923. PubMed ID: 30756432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-supervised learning for improved calibrationless radial MRI with NLINV-Net.
    Blumenthal M; Fantinato C; Unterberg-Buchwald C; Haltmeier M; Wang X; Uecker M
    Magn Reson Med; 2024 Dec; 92(6):2447-2463. PubMed ID: 39080844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance fingerprinting with quadratic RF phase for measurement of T
    Wang CY; Coppo S; Mehta BB; Seiberlich N; Yu X; Griswold MA
    Magn Reson Med; 2019 Mar; 81(3):1849-1862. PubMed ID: 30499221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance fingerprinting: from evolution to clinical applications.
    Hsieh JJL; Svalbe I
    J Med Radiat Sci; 2020 Dec; 67(4):333-344. PubMed ID: 32596957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confounding factors in breast magnetic resonance fingerprinting:
    Nolte T; Scholten H; Gross-Weege N; Amthor T; Koken P; Doneva M; Schulz V
    Magn Reson Med; 2021 Apr; 85(4):1865-1880. PubMed ID: 33118649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Supervised Deep Learning Reconstruction for Shortening the Breathhold and Acquisition Window in Cardiac Magnetic Resonance Fingerprinting.
    Hamilton JI
    Front Cardiovasc Med; 2022; 9():928546. PubMed ID: 35811730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicenter Repeatability and Reproducibility of MR Fingerprinting in Phantoms and in Prostatic Tissue.
    Lo WC; Bittencourt LK; Panda A; Jiang Y; Tokuda J; Seethamraju R; Tempany-Afdhal C; Obmann V; Wright K; Griswold M; Seiberlich N; Gulani V
    Magn Reson Med; 2022 Oct; 88(4):1818-1827. PubMed ID: 35713379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved performance of prostate DCE-MRI using a 32-coil vs. 12-coil receiver array.
    Riederer SJ; Borisch EA; Froemming AT; Grimm RC; Kawashima A; Mynderse LA; Trzasko JD
    Magn Reson Imaging; 2017 Jun; 39():15-23. PubMed ID: 28132859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-fidelity direct contrast synthesis from magnetic resonance fingerprinting.
    Wang K; Doneva M; Meineke J; Amthor T; Karasan E; Tan F; Tamir JI; Yu SX; Lustig M
    Magn Reson Med; 2023 Nov; 90(5):2116-2129. PubMed ID: 37332200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: A proof-of-concept study.
    Sushentsev N; Kaggie JD; Slough RA; Carmo B; Barrett T
    PLoS One; 2021; 16(1):e0245970. PubMed ID: 33513165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-rank inversion reconstruction for through-plane accelerated radial MR fingerprinting applied to relaxometry at 0.35 T.
    Mickevicius NJ; Glide-Hurst CK
    Magn Reson Med; 2022 Aug; 88(2):840-848. PubMed ID: 35403235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies.
    Han D; Choi MH; Lee YJ; Kim DH
    Korean J Radiol; 2021 Aug; 22(8):1332-1340. PubMed ID: 34047506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored magnetic resonance fingerprinting for simultaneous non-synthetic and quantitative imaging: A repeatability study.
    Qian E; Poojar P; Vaughan JT; Jin Z; Geethanath S
    Med Phys; 2022 Mar; 49(3):1673-1685. PubMed ID: 35084744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-assisted preclinical MR fingerprinting for sub-millimeter T
    Gu Y; Pan Y; Fang Z; Ma L; Zhu Y; Androjna C; Zhong K; Yu X; Shen D
    Magn Reson Med; 2024 Mar; 91(3):1149-1164. PubMed ID: 37929695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effect of acquisition schemes on time-resolved magnetic resonance fingerprinting.
    Li T; Cui D; Ren G; Hui ES; Cai J
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33823496
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.